Introduction
Zinc (Zn) is a non ferrous base metal, which is generally found in bluish-white, yellow, brown or in black colour. Its chief and important minerals are sphalerite or zinc blende, smithsonite, calamine, zincite, willemite and franklinite. As it boils at around 900° C, which is lower than the temperature it can be smelted at, therefore it is difficult to smelt this metal. Hence zinc technology was mastered later than that of copper and iron. For pure zinc production, therefore distillation technology was developed, in which India has the distinction of being the first. Zinc is used for galvanising iron and steel, brass making, alloying, manufacture of white pigment in chemicals and medicines. But in ancient times it was mainly used for brass making. In fact brass has a much longer history than zinc. Brass can be produced either by smelting copper ores containing zinc or copper and zinc ore in reduced condition or by mixing copper and zinc metals.
Early evidence of zinc has been claimed from several parts of Europe and Middle East e.g., Switzerland, Greece, Cyprus and Palestine. But all these claims, except for the evidence of the sheet of zinc from the Athenian Agora (300 BC) are doubtful (Craddock et al., 1998: IS). Recent studies have shown that such small percentages of zinc may occur due to accidental use of copper ore associated with zinc or its ore.
Brasses containing up to 25 percent zinc have been reported from the fifth and third millennium BC contexts from China, but it seems that they did not play any role in the development of zinc production technology in the Far East. It is generally held that the Chinese started using zinc and brass from the last quarter of the third century BC when the Han Dynasty flourished in China. Craddock and Zhou have suggested that zinc was introduced in China through Buddhism around 2000 years ago. However, Weirong and Xiangxi (1994: 16-17) inform that the earliest literary record about brass mentioned as tutty is known from the Buddhist literature belonging to the Tan dynasty (619-917 AD). Brass (thou-shih) was not a common commodity in the early centuries of the Christian Era at least prior to 3rd century AD in China. Bowman et al.(1989) have analysed 550 coins ranging from 3rd century BC (Zhao dynasty) to the late 19th century (Ch'ing dynasty). They have found that the percentage of zinc suddenly increased by 20% or even up to 28% in brasses of the early 17th century AD. It is also supported by the well known textual evidence of T'ien Kung K'ai Wu, written in 1637 (Sung and Sun 1966). It is the first definite evidence of metallic zinc in China, which also mentions details of alloys used for coins. Weirong (1993) has examined ancient Chinese literature and archaeological record and claims that metallic zinc was not used in China prior to the 16th century AD.
As far as India is concerned the firm evidence of zinc smelting is known only from Rajasthan. The antiquity of mining various types of ores in Rajasthan goes back to Bronze Age (mid-fourth millennium BC) as the evidence of Ganeshwar-Jodhpura cultural complex in north Rajasthan and Ahar culture in southern Rajasthan would indicate (Agrawal and Kharakwal, 2003; Misra et al. 1995; Shinde et al. 2001-02). Both these cultural complexes have yielded over 5000 copper-bronze objects (Hooja and Kumar, 1995) ranging from 4th to 1st millennium BC. Apart from these, the Mesolithic site of Bagor in Bhilwara district also yielded a few copper arrowheads (Misra, 1973). There are large number of ancient copper, iron, lead working and smelting sites across Rajasthan in the Aravallis, indicating a long tradition of metallurgy. Besides metal tools, a variety of pottery, beads of semi precious stones, terracotta, paste and other antiquarian material is known from such early settlements. These early farmers were practicing diverse crafts using pyrotechnologies. It appears that large scale production of different metals e.g., copper at Singhana, Toda Dariba, Banera, Suras, Bhagal, Kotri, lead-silver at Ajmer, Agucha and Dariba, zinc at Zawar and iron at Dokan, Iswal, Karanpur, Loharia, Parsola, Bigod, Jhikari-Amargarh, belonging to the medieval times (Kharakwal, 2005) was the result of such long experience of metal technology involving pyrotechniques. In fact the Aravallis are a polymetallic zone like Anatolia.
This paper is an attempt to present an overview of the archaeometallurgical researches on zinc and the position of zinc and brass in archaeological perspective in India.
Zawar: The Oldest Production Center of Zinc
Zawar (24°21'N; 73°43'E) is located on the bank of the River Tiri, about 38 km south of Udaipur town in the Aravalli hills in Rajasthan (Fig. 1). It is the only known ancient zinc smelting site in India (Craddock et al., 1985). The entire valley of Tiri at Zawar is marked by immense heaps of slag and retorts, which indicate a long tradition of zinc smelting at Zawar. On some slag-mounds are found remains of houses made of used retorts (Fig. 2) and stones, perhaps belonging to the smelters/smiths.
Fig. 1: Map showing location of Zawar (after Craddock et al 1985)
Fig. 2: Residential structures made of discarded retorts
Though archaeometallurgical activity at Zawar was casually recorded by several Indian and British scholars between 17th and 20th century, the credit of highlighting the importance of the ancient remains however goes to Crookshank (1947), Carsus (1960), Morgan (1976), Strackzeck et al. (1967) and Werner (1976 see in Gurjar et al., 2001). Perhaps these reports encouraged P.T. Craddock of British Museum and K.T.M. Hegde of M.S. University of Baroda to initiate archaeometallurgical study at Zawar jointly with Hindustan Zinc Limited, Udaipur in 1983 (Craddock et al., 1983, 1985; Gurjar et al., 2001; Hegde, 1989; Paliwal et al., 1986; Willies, 1984). This team carried out extensive investigations both for ancient mining as well as smelting of zinc at Zawar. They discovered incredible evidence for mining and furnaces used for zinc smelting, besides primitive smelting retorts from the dam fill at Zawar.
Besides Zawar, the evidence of early zinc mining and smelting has also been found 2 km south east of village Kaya in form of a small retort heap and ancient mine workings in the adjacent hills. It is the northwestern continuation of Zawar mineralization. These remains have not been studied in detail but considering the shape of retorts it can be safely concluded that they are of the same period. Kaya is located 6 km north of Zawar, and about 15 km south of Udaipur town.
Mining
Zinc ores are widely distributed in the country, but major deposits are found in the Aravallis. In recent years one of the largest lead-zinc deposits have been discovered at Agucha in Bhilwara district (Tewari and Kavadia 1984), though the well known ancient lead-zinc workings are located in the Zawar area of Udaipur district. Zinc (Zn) is generally found in veins in association with galena, chalcopyrite, ironpyrite, silver and cadmium and other sulphide ores (Raghunandan et al., 1981). The Aravalli range in southern Rajasthan is composed of rugged and gorgeous hills of pre-Cambrian metamorphic rocks with narrow valleys. These rocks are rich in zinc ore in the form of sphalerite veins in association with galena and copper bearing deposits. This mineralized belt of Zawar extends for about 25 km. The major mineralization of sphalerite and galena with varying quantities of pyrite have been found in the form of sheeted zones, veins, stringers and lenticular bodies (Raghunandan et al., 1981). Since these minerals are quite distinct from each other it was possible to separate them manually and this explains why zinc mining and smelting developed only at Zawar.
There are extensive remains of old workings in Zawarmala, Mochia Magra, Balaria, and at Hiran Magra in Zawar area in the form of deep trenches, shafts, open stopes, long serpentine galleries and inclines. These mines are narrow and vary from 10 to 300 m in length. There is extensive evidence of underground mining too (Fig. 3). It appears that this mining continued for several hundred years as indicated by the enormous mound of slag and smelting debris.
Fig. 3: The ancient mine in Zawar
Once the ore was located on ground, based on the presence of gossan or mineralized veins, the miners followed the down ward extension along dip and pitch of the ore-shoot and developed huge inclined stopes and chambers underground. These stopes and branched chambers were supported by finger like inclines further down. Arch shaped pillars (about 4XSm) were left to support the roof while developing such stopes and chambers (Gurjar et al., 2001). Mining was carried out by fire setting as evidenced by the rounded profile of galleries and stope chambers, the supporting pillars, smooth surface of rock faces with sooty deposits and the floors are buried deep in charcoal, ashes and calcined rocks (HindZinc Tech 1989). After dousing the fire the rocks were broken with chisels, pick axe, hoes and other iron implements. A few such objects have been discovered from Mochia mines (Craddock et al., 1989: 62, p13). Extensive use of wood in the form of ladders, roof support, haulage scaffold (14C date: 2350±120 BP) have been found in the mines.
Extensive open pit mining followed by underground method was carried out at Rajpura Dariba. An opencast mine of lead-zinc (300 m long and 100 m wide) developed over east lode at Dariba, (Raghunandan et al. 1981 :86-87) is a remarkable evidence of ancient mining technology practiced in southern Rajasthan. Excavation carried out by Hindustan Zinc Limited in 1986 has brought out the presence of massive timber revetment in the hanging wall of the open pit. This consists of three or probably four benches each 4m high with closely placed vertical posts, held back by three pairs of horizontal timbers and are pinned by long timbers to provide support to weak hanging wall.
Here, in one of the underground mines of the East Load the miners reached up to a depth of 263 m, in the 3rd 4th century BC (Craddock et al. 1989:59; Willies et al. 1984). Such mines are rarely known in the ancient world. A 14C date from Dariba indicates that deep underground mining had begun in the second half of the second millennium BC. At Agucha also extensive evidence of mining of rich galena pockets datable to the Mauryan times has been discovered (Tiwari and Kavdia, 1984: 84-85). The smelting debris and mining clearly indicates that it was carried out for lead and silver.
For dewatering mines launders of hollowed timber (3 m long and 20 cm wide) were used, which have been dated back to 2nd century BC (Bhatnagar and Gurjar, 1989: 6). It is likely that some kind of buckets may have also been used for pulling out water from such deep mines. The possibility of shallow depressions at certain interval in the slanting wall of the mines for collection of water can not be ruled out.
A few shallow conical and U shaped pits have been reported in hard rocks at Baroi and Dariba. They may have been used for crushing/ breaking rock fragments in order to separate and beneficiate the ore before smelting. At Dariba such pits having a diameter of 27-30 cm and 60-70 cm deep were found close to a large opencast in calc-silicate rock. While at Baroi in Zawar these were 8-12 cm in diameter and 10-18 cm deep and found on the surface next to ancient mine workings.
It is interesting to note that mining of such non-ferrous metals was also recorded in the contemporary literature like Kautilya's Arthasastra (2.12.23, 2.17.14 & 4.1.35), which mentions that there was a superintendent of mines in the Mauryan Empire (Kangle, 1972). His duty was to identify metals and establish factories. While describing silver ores the text clearly mentions that it occurs with nag (lead) and anjan (zinc). Since there is extensive evidence of mining and smelting of lead, zinc and silver at Zawar, Dariba and Aguchha in Rajasthan, it is quite likely that Kautilya was aware of this activity. Harry (1991) points out that the imperial Maurya series of coins, particularly silver ones, containing one fourth of copper, strongly indicates the mining of silver and zinc from southern Rajasthan. Mining of such ores had surely begun in Rajasthan by the middle of the first millennium BC, if not earlier.
Some scholars have argued that Zawar should be identified as Aranyakupgiri of the Samoli inscription (Halder, 1929-30) belonging to seventh century AD. The word Aranyakupgiri of the inscription perhaps stands for deep well like mines. Of course such mines were there in Zawar during this time, but the inscription may refer to the mines of Basantgarh located near Samoli in Sirohi district rather than Zawar.
The underground mining of ores at Agucha, Dariba and at Zawar may have been the result of a gradual development of mining technology in Southern Rajasthan going way back to the middle of the fourth millennium BC when Bronze Age cultures had just appeared on the scene in the region.
What is interesting is the fact that no evidence of smelting of zinc has been found so far prior to 9th century BC. Craddock et al. have pointed out that mining of zinc ore was surely done in Zawarmala in 3rd-4th century BC. Perhaps the evidence of smelting ranging from 4th century BC to 9th century is buried under the massive dumping of retorts and smelting debris and temple complexes. The evidence of a large stone structure and Early Historic pottery shapes exposed near the Jain temple in old Zawar also confirms the same.
Table 1. Radio Carbon Dates for Zawar Mines (After Gurjar et al., 2001)
BM No. | Context | Material | Date BP | Calibrated dates |
BM-2017R | Retort | charcoal | modern | 1550 to 1635 AD Modern |
BM-2065R | Retort | charcoal | modern | 760 to 360 BP |
LW/1982/2 BM-2148R | | wood | 2350±120 | 285 to 255 BC |
BM-2149R | LW/1982/1, Launder in escape route | wood | 2140±110 | 365 BC to 90 AD |
BM-2222R | Trench layer 3 | charcoal | 240±110 | 1510 to 1690 AD or 1730 to 1810 AD or 1925 AD to modern |
BM-2223R | Site 30, N side of furnace | charcoal | 530±50 | 1320 to 1345 AD or 1390 to 1435 AD |
BM-2243R | sample 33, site 34 | charcoal | 350±130 | 1420 to 1670 AD |
BM-2484 | site 5, layer 3, slag heap | charcoal | 100±45 | 1695 to 1730 AD or 1815 to 1920 AD |
BM-2485 | site 14, layer 3 | charcoal | 1950±60 | 25 BC to 115 AD |
BM-2486 | site 29, layer 2, small pit or hearth | charcoal | 200±35 | 1660 to 1675 AD or 1745 to 1800 or 1940 AD to modern |
BM-2487 | site 2, trench 2, slag heap | charcoal | 1930±80 | 40 BC to 145 AD; 170 to 180 AD |
BM-2488 | site 7, trench 2, slag heap | charcoal | 1370±80 | 595 to 720 AD or 740 to 765 AD |
BM-2638 | furnace block | charcoal | modern | |
BM-2639 | ZWLW/22, Pratap khan | charcoal | 2040±70 | 160 to 135 BC or 125 BC to 25 AD |
BM-2481 | ZM/LW/85/13 small chamber off main galleries | charcoal | modern | modern |
BM-2482 | ZM/LW/85/14 short ladder way | wood | 2150±110 | 365 to 100 BC |
BM-2483 | ZM/LW/85/8, burned layer | wood | 2180±35 | 355 to 290 BC or 250 to 195 BC |
BM-2634 | ZWLW/87/26, top chamber | charcoal | 1340±100 | 600 to 790 AD |
Balaria | | | | |
BM-2338 | support timber western slope | wood (outer ring) | 170±50 | 1660 to 1695 AD or 1725 to 1820 AD or 1860 to 1865 AD, 1920 to modern |
BM-2381 | Gallery | wood (outer ring) | 2360±60 | 750 to 720 BC or 525 to 385 BC |
BM-2666 | ZW/LW/87/32 | charcoal | 390±50 | 1440 to 1520 AD or 1590 to 1629 AD |
The consistency of these radiocarbon dates clearly suggest that mining activity was carried out during the Early Historic period and medieval times (Craddock et al., 1989:48).
Traditionally Maharana Lakha or Laksha Singh (14th century), who was ruling in the last quarter of the 14th century, is believed to have re-opened these mines. He might have opened several new mines rather than reopening the old ones. Besides, Maharana Pratap (16th century) is also credited for opening new mines at Zawar. One of the major mines at Zawarmala is known after him. It seems that large scale production of zinc continued despite political instability in southern Rajasthan during the late medieval times.
It was Abul Fazl who for the first time in 1596 in his well known Ain-i-Akbari recorded the zinc mines of Zawar (Blochmann, 1989: 41-43). The mining and smelting activity was not only registered in the contemporary local records and literature (e.g., Nainsi ri Khyat in 1657; Bakshikhana Bahi 91, Rajasthan State Archives records of Udaipur and Bikaner and others) but also in the writings of several scholars of the 19th and 20thcentury, mostly British (Anon, 1872; Brooke, 1850; Carsus, 1960; Erskine, 1908; Shyamal Das, 1986 I (originally published in 1886): 305; Tod, 1950: 221-222).
Mining of several ores for example iron, copper, lead was being done as late as the 19th century in several parts of Rajasthan. Unfortunately the Zawar zinc operation came to a halt around 1812 AD, unlike the Chinese traditional zinc smelting. A few British officers attempted to restart these mines in the middle and late nineteenth century with the financial support of Maharana Sarup Singh (1842-61), Shambhu Singh (1861-1874 AD) and Sajjan Singh (1874-1884 AD), but failed. It is believed that due to political instability in Mewar, frequent attacks of the Mughals, Pindaris and the Marathas and recurrent famines in the 18th century these mines were abandoned.
Smelting and Production
The entire valley of the Tiri in Zawar is dotted by massive dumpings of slag and earthen retorts indicating a long tradition and commercial production of zinc. Several radiocarbon dates (see table 1) bracketed between 12th and 18th century also conform this activity. Gurjar et al. (2001: 633) write, "the earliest evidence of zinc smelting on industrial scale is the carbon date of 840±110 AD for one of the heaps of white ash removed from zinc smelting furnace. The fragment of relatively small, primitive retorts and perforated plates found in the earth fill of dam across the Tidi (Tiri) river may belong to the period or they must at least predate the dam itself. It appears that the main expansion of the industrial phase of zinc production began at Zawar sometime from 11th or 12th century".
At Zawarmala a bank of seven distillation furnaces (Fig. 4), roughly squarish on plan (66x69 cm), were discovered by Craddock et al. Each furnace had two chambers, upper and lower, separated by a thick perforated plate of clay. It is presumed by the excavators that the furnaces may have looked like truncated pyramids and their height may have been about 60 cm. Brinjal shaped earthen retorts, filled with charge, were placed on the perforated plate in inverted position in the upper chamber. As many as 36 retorts were placed in each furnace for smelting and they were heated for three to five hours. The retorts were made in two parts and luted together after filling the charge. To prepare the charge the ore was subjected to crushing and grinding and mixed with some organic material and cow dung! rolled into tiny balls and left in the sun for drying. These balls then were placed in retorts after drying. A thin wooden stick was placed in the narrow opening of retort, which perhaps prevented falling of charge in the lower chamber before heating when they are initially inverted in the furnace, and at the same time would facilitate the escape of zinc vapour formed during heating. Such special retorts, ranging from 20 to 35 cm in length and 8 to 12cm in diameter, were developed by the metallurgists at Zawar for zinc distillation. Identification of different size of retorts is sure indication of different shape and size of furnaces at Zawar, as the evidence of a bigger furnace (base 110 cm square) from old Zawar would also indicate. After heating, zinc vapor was collected and condensed in the lower chamber in small earthen pots. It was surely an ingenious method that was devised for downward distillation of zinc vapour by the Zawar metallurgists. Thus, it was for the first time anywhere in the world that pure zinc was produced by distillation process on a commercial scale at Zawar. Gangopadhyay et al. (1984) and Freestone et al. (1985) have carried out technical studies of ore and retorts. Craddock (1995 :309- 321) compares these furnaces with koshthi type furnaces illustrated in Rasaratnasamuchchaya, an alchemical text datable to 13th century, and other earlier texts on the same subject. Thanks to the joint efforts of the Hindustan Zinc, British Museum and M.S. University Baroda for such wonderful discovery that is possibly the ancestor of all high temperature pyrotechnical industries of the world.
Fig. 4: Zinc smelting furnaces at Zawar
It has been estimated that each retort may have been filled with one kilogram of charge out of which 400 gram of zinc may have been produced. Thus each furnace produced around 25 to 30 kg of zinc in one activity of smelting. It has been estimated that 600,000 tons of smelting debris at Zawar, produced about 32,000 tones of metallic zinc in four hundred years (between 1400 and 1800 AD). If we estimate this production from 12th century to 18th century the quantity of metal would certainly be more than 50,000 tonnes. Colonel Tod in his well known work, Annals and Antiquities of Rajasthan, has reported that the mines of Mewar were very productive during the eighteenth century, and in the year of 1759 alone the mines earned Rs. 2,22,000 (Tod, 1950: 222, 399). Tod writes that about haifa century ago these mines were earning Rs. three lakhs annually. Dariba mines yielded Rs. 80,000. He has recorded these mines as Tin mines of Zawar. Since we do not have any evidence of ancient tin working in Mewar region his tin mines must be nothing but zinc mines of Zawar. Moreover the Imperial Gazetteer of India Provincial Series Rajputana (1908: 52) clearly mention that these mines were famous for silver and zinc and were worked on a large scale until 1812-13 when the worst famine took place (Kachhawaha, 1992: 26-27; Malu, 1987; Singh, 1947).
The production of zinc was perhaps very high under the rule of Maharana Jagat Singh and Maharana Raj Singh during 17th century as the local records of AD 1634-35 and 1657 reveal that annual revenue of Zawar was rupees 2,50,000 and 1,75,002 respectively. It is also clearly indicated in the record that per day income of these mines was Rs. 700; this estimate was confirmed by Muhnot Nainsi in his famous work Nainsi ri Khyat (1657) (Ranawat, 1987). Another record belonging to the reign of Maharana Raj Singh, reads that the revenue earned in a year from Zawar was Rs. 17,96,944 (Bhati, 1995: 1, 2, 11, 12, 14). Gurjar et al. (2001: 634) have examined a record of the same king dated to 1655 AD, preserved in the State Archives, Udaipur which mentions an income of Rs. 1,70,967 in a single month from Zawar! We are however, not sure whether this income was obtained only from mining and smelting. As the entire area of Zawar is gorgeous and agriculture may not have been enough to generate revenue, therefore it is likely that the entire revenue was earned from mining and production of zinc. Erskine (1908) also informs that these mines were certainly an important source of income right from fourteenth to early nineteenth century as they yielded more than two lakh rupees annual revenue for Maharana's treasury at least until 1766. Thus the annual income from Zawar was quite handsome and it is likely that due to large scale production of zinc Zawar may have become one of the main sources of state revenue and an important trade centre between the 12th and early 19thcentury AD. The discovery of an earthen pot containing a coin hoard datable to 16thcentury by L.K. Gurjar in 1984 (Gurjar et al. 2001) at old Zawar also suggests that this area was an important commercial center. There are remains of few structures on top of a hillock at Zawar, which, according to knowledgeable villagers, belong to Vela Vania (a trader known as Vela). Perhaps Vela Vania was involved in zinc trade.
It is worth mentioning here that most of the existing forts, huge water reservoirs, temple complexes, water structures, and other monuments in Mewar were built between 10th and 18th centuries AD. It is likely that the revenue earned due to brisk trade of zinc at Zawar was utilized for construction of these large monuments.
Zinc and Brass in Archaeological Perspective
Only a few Harappan bronzes have yielded a small percentage of zinc. For example Lothal, a Harappan sites in Gujarat (2200-1500 BC) (Rao, 1985), has yielded around haifa dozen copper based objects containing zinc, which varies from 0.15 to 6.04 % (Nautiyal, et al. 1981). One of the objects (antiquity No. 4189), though not identified, contains 70.7% of copper, 6.04 % of zinc and 0.9% Fe, which could be termed as the earliest evidence of brass in India. From Kalibangan, another Harappan site in north Rajasthan, a long spear head of copper was found containing 3.4% of zinc (Lal et al.2003: 266). There is some evidence of brass from the early Iron Age when we come across two examples from Atranjikhera (1200- 600 BC), a Painted Grey Ware culture site in the Ganga doab. One of the objects leaded bronze contains 1.68% tin, 9.0% lead and 6.28% of zinc whereas the other one assayed 20.72% of tin and 16.20% of zinc (Gaur 1983: 483-90). Unless we have more examples of bronzes containing appreciable percentage of zinc replacing tin, arsenic or other elements we can not infer that the Bronze or Early Iron Age cultures were aware of the nature and property of zinc. Nevertheless these examples perhaps represent the early or experimental stage of zinc in India. The archaeological record indicates that in the second half of the first millennium BC the percentage of zinc started increasing and intentional use of brass appears on the scene. Such evidence has been found from Taxila, Timargarh and Senuwar.
Taxila, located about 30 km north of Rawalpindi in Pakistan, has yielded a large variety of metal objects including those of copper, bronze, brass and iron (Marshall, 1951 :567 -69). Several brass objects datable from the 4th century BC to 1st century AD have been discovered. One of them was a vase from Bhir mound, which predates the arrival of the Greeks at Taxila (Biswas, 1993) and has assayed 34.34 % of zinc, 4.25% of tin and small quantity of lead (3.0%), iron (1.77%) and nickel (0.4%). Another evidence of real brass was discovered recently at Senuwar in the Ganga Valley from the Northern Black Polished Ware (NBP) levels (Singh, 2004: 594). It has 64.324% of copper and 35.52% of zinc.
Brasses made by cementation method generally contain less than 28% of zinc and rarely could go up to 33% (Werner, 1970). Since the examples of Taxila and Senuwar have yielded more than 33 % of zinc, therefore these are the earliest definite examples of real brasses. They must have been made by mixing metallic zinc with copper. Zinc is a volatile metal and due to its low boiling point (907° C), which is lower than the temperature it could be smelted, it is difficult to smelt. Unlike other metals, it comes out in the vapour form from the furnace and gets reoxidised, if it is not condensed. Craddock et al. have pointed out that zinc ore was mined way back from 5th century BC (PRL 932 430±100 BC; BM 2381 380±5O BC) at Zawar and metallic or pure zinc was produced here by distillation process for the first time in the world. The production of metallic zinc has been traced back to 9th century AD at Zawar, but there is a strong possibility that the older evidence is buried under the immense heaps. Though Taxila folks were aware of the distillation process (Habib, 2000), yet in the absence of definitive evidence we cannot claim that they employed this process for obtaining zinc. It is possible, though not proven that metallic zinc was produced at Zawar way back from the 6th century BC, from here it reached at Taxila and Senuwar. The other possibility is that zinc was scrapped from the cooler parts of the furnaces at both sites!
Besides these, Prakash (Athavale and Thapar, 1967: 132 table IV) and Mahurjhari in Mahararashtra (Deo, 1973; Joshi 1973:77), Asura sites in Chhotanagpur region (Caldwell, 1920: 409-411; Roy, 1920: 404- 405) have yielded brasses, which have been dated to the second half of the first millennium BC. Most of these brasses have more than 15% of zinc and some of them contain between 22 to 28 percent of zinc. This kind of evidence clearly points out they were made by cementation process.
Several circular or rectangular punch-marked and other coins of brass, . bracketed between the 2nd century BC and 4th century AD (Smith, 1906) (see Table 2), are known mostly from northern India. Since none of them is analysed we do not know if they are real brasses (objects containing more 28% zinc are called real brasses) or made by cementation process. What is interesting is that most of these coins belong to the regional kings, indicating popularity of brass in India. This kind of evidence goes against the assumption that the Greeks introduced brass in India. The archaeological record clearly points out that the Indians knew brass prior to the arrival of the Greeks.
No. | Period | King/Site | No. | Shape | Reference |
1 | 200 BC | Gomitra | 1 | Not stated | Smith, 1906: 205 |
2 | 200 BC | Mitasa (Gomitra?) or Satasa | 1 | Not stated | Smith, 1906: 205 |
3 | 2nd cent. BC | Unidentified | 1 | Not stated | Smith, 1906: 194 |
4 | 2nd cent. BC | Gomitra (Mathura) | 1 | Circular | Smith, 1906: 193 |
5 | 2nd cent. BC | Uttama Datta (Mathura) | 1 | Not stated | Smith, 1906: 193 |
6 | 2nd cent. BC | Bhavadatta (Mathura) | 1 | Not stated | Smith, 1906: 193 |
7 | 2nd cent. BC | Purushadatta (Mathura) | 1 | Not stated | Smith, 1906: 192 |
8 | 2nd cent. BC | Amoghbhuti (Kuninda king) | 6 | Circular | Smith, 1906: 168-169 |
9 | 2nd cent. BC | Rajanya (Naga or Narwar) | 4 | Not stated | Smith, 1906: 179-180 |
10 | 2nd cent. BC | Asvaghosa (Kosam) | 1 | Circular | Smith, 1906: 155 |
11 | 150 BC - 100 AD | Dhana Deva (Ayodhya) | 1 | Rectangular | Smith, 1906: 148 |
12 | 150 BC - 100 AD | Siva Datta (Ayodhya) | 3 | Rectangular | Smith, 1906: 149 |
13 | 150 BC - 100 AD | Ajaverma (Ayodhya) | 1 | Circular | Smith, 1906: 150 |
14 | 125 - 80 AD | Hagamasha (Satrap of Mathura) | 1 | Not stated | Smith, 1906: 196 |
15 | 100 BC | Audumbara king | 1 | Circular | Smith, 1906: 166 |
16 | 1st cent. BC - AD | Yaudheya kings | 3 | Not stated | Smith, 1906: 181 |
17 | 1st cent. BC - AD | Agnimitra (Panchala and Kaushala) | 2 | Circular | Smith, 1906: 186-187 |
18 | 1st cent. BC - AD | Bhumitra (Panchala and Kaushala) | 1 | Circular | Smith, 1906: 187 |
19 | 1st-1nd cent. AD? | Devasa (Kosam) | 8 | Circular | Smith, 1906: 207 |
20 | 1st-1nd cent. AD | Unidentified | 1 | Rectangular | Smith, 1906: 201 |
21 | 2nd cent. AD | Unidentified | 2 | Circular | Smith, 1906: 203-204 |
22 | 3rd-4th cent. AD | Pasaka (Kushana type) | 1 | Not stated | Smith, 1906: 89 |
23 | Medieval | Unknown (Jajjapura/i) Sri Siva type | 1 | Not stated | Smith, 1906: 333 |
24 | 3rd-4th cent. AD | Basata (later Kushana) | 5 | Not stated | Chatterjee, 1957: 103 |
Table 2: Early brass coins of lndia (After Smith 1906)
Beside coins, several other brass antiquities have also been reported from the Early Historic sites in Uttar Pradesh, Madhya Pradesh and Gujarat, which include lids, caskets, bangles, finger rings, utensils, icons, chariot and religious object and utensil (Biswas, 1993, .1994: 360; Biswas and Biswas, 1996: 132).
Since zinc could change the colour of copper and impart it a golden glitter, it was preferred for making Hindu, Buddhist and Jain icons throughout the historical period. For example among the brass icons of the Himalayan region (from Tibet to Gandhar) lead is present in appreciable amount and the percentage of zinc varies from 4 to 35 (Chakrabarti, and Lahiri, 1996: 108-109; Reedy, 1988). Obviously these brasses were made by selection of ore, cementation process and mixing metallic zinc with copper. In the absence of a source of zinc in the Himalayan region it may be suggested that metallic zinc may have been supplied from Zawar. The higher percentage of lead in these brasses clearly suggests that it was deliberately added to increase the casting ability of the metal. Such leaded brasses were called kakatundi in ancient India.
Craddock (1981 :20-31) has reported analysis of 121 Tibetan and Himalayan icons/metal works by atomic absorption spectrophotometer for 13 elements in each sample down to 10ppm level. He has shown that as many as 45 artifacts have more than 28% of zinc, which might have been made by mixing copper and zinc. The percentage of zinc in such artifacts ranges from 28 to 54. It seems that most of the brasses of his list belong to Medieval and later Medieval times.
From Phopnarkala and East Nimar, in Madhya Pradesh, several standing brass images of Buddha have been discovered (Sharma and Sharma, 2000) assigned to the Gupta-Vakataka period (5th-6th centuries AD). These brasses contain high percentage of zinc ranging from 21 to 30%, which means that they were made by cementation process (Tondan, 1983).
In the first half of the seventh century AD (AD 629-645) Hiuen Tsiang, a Chinese scholar of Buddhism, extensively traveled in India. He saw a magnificent vihara(residential complex of Buddhist monks) of brass near Nalanda under construction during the reign of Raja Siladitya (Harshavardhan AD 606-647). It would have been more than 100 feet long when completed (Beal, 2000 vol. ii: 174). He also noticed brass images (teou-shih) of Buddhist and Brahmanic deities at several places in northern India (Beal, 2000 vol. i: 51, 89, 166, 177,197, 198, vol. ii: 45, 46,174).
The metal art of Eastern Indian complex, mainly coming from Bihar, West Bengal and Bangladesh, is also fairly well known. A large number of ancient bronzes, belonging to Pala and Sena School of art datable between 8th to 12th centuries AD contain considerable amount of zinc (Leoshko and Reedy, 1994; Pal, 1988; Reedy, 1991a, b).
A large number of bronzes and brasses mostly icons of Jain and Hindu deities, containing appreciable amount of zinc, have been reported from various parts of Gujarat, and are datable to 6th to 14th centuries AD (Swarnakamal, 1978). Most of the late medieval brasses were made by mixing metallic zinc with copper as the percentage of zinc has been found to exceed more than 28%. In some cases lead is present up to 9.5%, which must have been useful rending fluidity to the metal. It is likely that all these brasses were made of using metallic zinc from Zawar. Biswas (1993) writes that the icon of seated Tirthankara dated AD 1752 from Gujarat is one the finest example of the late medieval brasses in India, which was made a few years before the Maratha invasion of Mewar.
Table 3: Elemental percentage of brasses datable to 14th to 18th centuries AD
(after Biswas, 1993 and Swarnakamal, 1978)
No. | Object | Provena. | Period | Cu% | Zn% | Sn% | Pb% | Fe% | Impurities |
1 | Ambika | Gujarat | 1350 | 68.4 | 18.5 | 1.6 | 9.5 | - | Fe, Ag, Bi |
2 | Model of temple with 4 doors | " | 1480 | 68.6 | 28.9 | 0.2 | 1.6 | - | Fe, Mg, Bi |
3 | Vishnu-Narayan | " | 1485 | 58.9 | 36.8 | 0.5 | 2.1 | - | Fe, Al, Ag, Si, Mg, Bi |
4 | Rajput Prince | Rajasthan | 15th-16th | 72.9 | 21.8 | 0.4 | 2.7 | 1.0 | Al 0.3, Mg, Ag |
5 | Kal Bhairava | Gujarat | 1554 | 76.7 | 13.8 | 1.2 | 6.3 | 1.5 | Al, Mg |
6 | Chauri Bearer | Gujarat | 17th | 58.3 | 35.5 | 1.5 | 2.3 | 0.8 | Fe, Ni, Al, Ag, Cd, Si, Mg |
7 | Dipalakshami | Rajasthan | 17th | 58.8 | 33.2 | 0.9 | 4.5 | - | Al 1.6, Mg |
8 | " | Gujarat | 18th | 52.8 | 39.9 | 1.1 | 2.9 | - | Fe, Al |
9 | Tirthankara (seated) | Gujarat | 1752 | 62.3 | 36.0 | - | 0.5 | - | Fe, Ag, Bi |
10 | Sadakasari Lokesvara form of Avlokitesvara | Nepal | | 60.5 | 35.3 | 2.75 | 2.37 | - | Fe, Ni, As, Au |
Table 3 contains a few brasses from medieval and late medieval period of India, most of which have a high percentage of zinc. All those examples containing more than 33% were certainly made of metallic zinc. In some cases lead is present up to 9.5%, which must have been useful rending fluidity to the metal. The metallurgists were obviously skilful to produce high quality of brass. It is quite likely that all these brasses were made by using metallic zinc from Zawar. The Mughals, who ruled over India between 12th and 16th centuries, had metal karkhanas (factories), in which a large number of brasses for example utensil, decorative pieces, guns, mortars and so on were produced perhaps employing zinc from Zawar (Neogi, 1979: 40-42).
It is held that the artillery made of iron, bronze and brass was introduced in India during the Mughal period. Large cannons and guns made of brass have been reported from Agra, Bengal and other places (Neogi, 1979). There are a few brass cannons at Udaipur too, which might have been made by zinc obtained from Zawar.
Bidri Ware
The Bidri Ware of Bidar in South India, belonging to medieval period, is well known for its glossy black surface decorated with exquisite silver inlay art (Gairola, 1956). It is a zinc alloy decorated with silver or gold inlay. La Niece and Martin (1987) have done detailed technical study of27 vessels of this ware from the Victoria and Albert Museum's collection. Their results show that the content of zinc varies from 76 to 98%, copper 2 to 10% and lead 0.4 to 19%. Lead isotope studies have indicated that the zinc was not obtained from Zawar for Bidri ware (Craddock et al. 1989: 52-53). This kind of result has brought about a challenge to look for other zinc production sites in India, if this metal was not imported from outside!
Literary Evidence
Ayurvedic treatises such as Susrut Samhita (5th century BC) and Charak Samhita (2ndcentury BC) record the use of essence of various minerals and metals e.g., gold, silver, copper, tin, bronze and brass for preparation of medicine. These texts also mention that the instruments used for curing delicate parts of the body were made of gold, silver, copper, iron, brass, tooth, horn, jewels and of special variety of wood (Datt Ram, 1900: 12; Sharma, 2001 II: 444). Both these texts record brass as riti or ritika. It is interesting that both Charak Samhita and Susruta Samhita refer to pushpanjan, which was prepared by heating a metal in air and was used for curing eyes and wounds (Chikitsasthanam 26.250) (Shukla and Tripathai, 2002: 661; Ray, 1956: 60). This could be identified as zinc oxide as Craddock (1989: 27) points out that "no other metal would react in the air to produce an oxide suitable for medicinal purpose". Therefore, these Ayurvedic texts are perhaps the earliest literary evidence of zinc in India.
Kautilya's Arthasastra is one of the earliest firm datable (4th century BC) textual evidence for mining and smelting of metals, which reveals that the director of metals was responsible for establishing factories of various metals such as copper (tamra), lead (sisa), tin (trapu), brass (arakuta), bronze (kamsa or kamsya), tala and iron (Kangle, 1960 vol I: 59 and vol II: 124; Kangle, 1972 vol II: 108). Brass has also been frequently mentioned in ancient Sanskrit and Buddhist literature and was popularly known as harita, riti, ritika, arkuta or arkutah, pitala and so on (Chakrabarti and Lahiri, 1996: 149; Neogi, 1979: 41; Sastri, 1997:208). The term kamsakuta of Digha-nikaya and Dhammapada Atthakatha has been interpreted as brass coins by Chatterjee (1957: 104-111). He strongly argues that brass currency was in vogue between 6th and 4th century BC in India, though we don't have chemical analysis of known coins of this period. Darius I, a Persian king, had a few Indian cups, which were indistinguishable in appearance from gold except for their smell (Hett, 1993: 257). This may only be the Indian brass.
Strabo quotes the explanation of Nearchus about India, who traveled the north-western part of this country with the Macedonian army in 4th century BC, and writes that "they use brass that is cast, and not the kind that is forged; and he does not state the reason, although he mentions the strange result that follows the use of the vessels made of cast brass. that when they fall to the ground they break into pieces like pottery" (Jones, 1954: 117). This kind of evidence indicates that Indians were making brass way back in 4thcentury BC. But we do not know whether it happened due to absence of lead or high percentage of zinc?
The alchemist Nagarjuna is well known for his treatise on alchemy titled Rasaratnakara, which was perhaps originally written, as Biswas (1993: 317, 1994: 361-362; Ray, 1956: 116-118) argues, between 2nd and 4th century AD and compiled around 7th or 8th centuries AD. Nagatjuna was certainly a great scientist, who, for the first time, not only described cementation process but also zinc production by distillation technique (Biswas, 1993: 317; 1994: 361-362; Ray 1956: 129). This is therefore the earliest literary evidence, which records that brass is an alloy of copper and zinc. Rasarnavam Rastantram, an alchemical text datable to 12th century AD, is an important alchemical text, in which both brass and zinc have been recorded. This text clearly records zinc making process (Craddock et al, 1989: 31; Ray, 1956: 118), besides different kinds of zinc ores e.g., mratica rasak, gud rasak and pashan rasak. Apart from these there are a few other alchemical texts such as Rasakalpa, Rasarnavatantra, Rasprakash Sudhakar of Yasodhara, Rasendrachudamani of Somadeva and Rasachintamani of Madanantadeva (all datable from 10th to 12th centuries AD), also explain different kind of brasses and zinc- making by distillation process (Ray, 1956: 171-191). The description by Yasodhara for extraction of zinc appears to be the best one as Craddock et al.'s (1989) work has shown that it fits well with the process used at Zawar. These texts reveal that koshthi type furnaces were used for smelting and had an arrangement of two chambers separated by a perforated plate. For distillation tiryakpatana yantra were used. The Rasaratnasamuchchaya, a late 13th or early 14thcentury work of iatro chemistry, is the best available literary evidence of zinc production process. In fact the zinc smelting process described by Yasodhara earlier has more or less been repeated in this text besides the illustrations of apparatus by Somadeva. Bhavamisra in the 16th century in his well known work, Bhavaprakasanighantu, recorded as many as seven different kinds of alloys (upadhatus) including bronze and brass (Chunekar and Pandey, 2002: 609). He has recorded two different kinds of brasses such as Rajariti and Brahmariti. Besides, two other types of brasses (pittala) i.e., ritika and kaktundi have also been recorded (Neogi, 1979: 41).
Besides these, Allan (1979: 43-45) cites the work of Abu Dulaf, Al-risalat al-thqniya,datable to 9th-10th centuries AD, who described production of a variety of tutiya in Iran. He recorded that the Indian tutiya was preferred in Persia (Allan, 1979: 43-45), which obviously might have been better than the Persian one. It is likely that the Persians imported Indian tutiya. The Persians also recorded Indian tutiya as the vapour of tin (Allan, 1979: 44), which might be zinc (Craddock et al. 1989: 74) from Zawar. Thus the Persian literary source also supports production of zinc in India in 9th-10thcenturies AD. And brass has surely longer history than zinc.
All the aforesaid literary references clearly suggest that metallic zinc was known in India several centuries before the actual dated evidence of commercial production at Zawar.
Thus the aforesaid archaeological and literary evidence indicates that Indians had started using zinc rich ores from second millennium BC, though we can not claim that it was intentional. Of course stray discoveries of brasses have been made from Bronze and Early Iron Age sites, but we can not conclude that it was a common metal. The discovery of coins and other objects indicates that it became popular only in the second half of the first millennium BC.
Zinc in Europe
William Champion established a zinc-smelting furnace in 1738 AD at Bristol in England and started commercial production in 1743. His furnace was quite similar to the Zawar example with downward distillation (Day, 1973:75-76). What is interesting is that Champion used exactly the same technique of distillation per descensum that was used at Zawar and even used 1.5% (weight) common salt in the zinc smelting charge (Biswas, 1993: 327). Thus his arrangement of retorts and technique was identical to Zawar. Dr. Lane is believed to have smelted zinc ore at his copper work in Swansea in 1720 (Porter, 1991: 60) around 20 years before Champion started zinc production in England. Was it Lane who came to Zawar and learnt zinc smelting technique and attempted it at Swansea, from where Champion, Henkel and 'others copied the Indian process!
Craddock gives credit to the Portuguese ships for transporting zinc from India to China and eventually introduction of zinc technology. He emphatically states that the Zawar process is the ancestor of all known zinc smelting techniques in the world.
Conclusion
Though, early evidence of metallic zinc is known from Athenian Agora and Taxila (datable 4th to 2nd centuries BC), there is no evidence of regular production of metallic zinc at these sites. However, recent discovery of brasses from Senuwar has now strongly indicated that metallic zinc was surely being produced during the Early Historic phase in India. It can be suggested that zinc was no more a rare metal. To date the oldest evidence of pure zinc comes from Zawar as early as 9th century AD, when distilration process was employed to make pure zinc. The Bhils of Southern Rajasthan are held to be the aborigines of this region (Hooja 1994) and prepare alcohol by traditional down-word distillation method. Interestingly zinc was also produced Zawar by using same principle of distillation. Moreover, Brooke (1850) has recorded that until 1840 the Bhils of Zawar knew distillation process of pure zinc. Therefore the credit of innovating special retorts and furnaces for distillation of zinc surely goes to the Bhil tribe of Southern Rajasthan. It was surely this local knowledge which they could successfully employ for distillation of zinc. Thus the Zawar metallurgists brought about a break through in non-ferrous metal extraction around 12th century, if not earlier, by producing it on commercial scale. On the other hand in China commercial production of zinc started almost three hundred years later than India. It appears that brass was introduced in China in the early centuries of the Christian Era through Buddhism, though the idea of zinc distillation process may have traveled in 16th century via international trade to China. From China it was exported to Europe in the middle of the 17th century AD under the name totamu or tutenag, which was derived from Tutthanaga - a name of zinc in South Indian languages (Bonnin, 1924; Deshpande, 1996). However, Indian zinc had already reached Europe prior to this and had created great curiosity about this metal. Thus the commercial production of zinc at Zawar had begun almost three hundred years earlier than China, if not earlier. Therefore, Zawar has globally stolen the march by becoming the oldest commercial center of zinc in the world. William Champion's furnace in the 18th century at Bristol was based on Indian downward distillation process, the idea of which may have reached there through the Portuguese or East India Company or by some European traveler. Hence Zawar, in the words of Craddock, is the· ancestor of all zinc production techniques of the world. It was an industrial activity, which laid the basis of various modern chemical and extractive industries.
Acknowledgements
We would like to record our sincere thanks to Prof. D. P. Agrawal and Rajiv Malhotra for constant encouragement to work on archaeometallurgy in Rajasthan. We are grateful to Profs. P. T. Craddock, V. H. Sonawane, K. K. Bhan, Toshiki Osada, G. L Possehl, V. S. Shinde, K. S. Gupta, S. Balasubramaniam, Michael Witzel, Meena Gaur and Drs Piyush Bhatt, S. Aruni, Shahida Ansari, P. Dobal, J. Meena, R. Barhat, B. M. Jawalia, S. K. Sharma, Vishnu Mali, H. Chaudhary and Mr. P. Goyal, L. C. Patel and Miss Noriko Hase for helping us at various stages while collecting data for this paper.
References
Agrawal, D. P. and J. S. Kharakwal 2003. Bronze and Iron Ages in South Asia, Delhi: Aryan Books International.
Allan. J. W. 1979, Persian Metal Technology 700-1300 AD. London: Ithaca Press.
Anon. 1872. The Mines of Mewar, The Journal of Indian Antiquary (see under Miscellany section) (Ed. J. A. S. Burgess) 1: 63-4.
Athavale, V. T. 1967. Chemical Analysis and Metallographic Examination of Metal Objects, in B. K. Thapar ed. Prakash 1955: A Chalcolithic site in the Tapti Valley, Ancient India 20-21: 135-39 (see table IV)
Beal, S. 2000 (1884). Buddhist Records o!the Western World vol 2. Trans, From the Chinese of Hiuen Tsiang, Trubner, London.
Bhati, H. S. 1995 (Ed.). Maharana Rajsingh Patta Bahi Pattedaran ri Vigat (in Hindi), Himanshu Publication, Udaipur.
Bhatnagar, S. N. & L. K. Gurjar 1989. Zinc - A Heritage, Hind Zinc Tech, Jan. 1989 Vol. 1.
Biswas, Arun Kumar 1993. The primacy of India in ancient brass and zinc metallurgy, Indian Journal of History of Science 28(4): 309-330.
Biswas, Arun Kumar 1994. Minerals and Metals in Ancient India Vol. 1 Archaeological Evidence, D. K. Printworld (P) Ltd., New Delhi.
Biswas, A. K. and S. Biswas 1996. Minerals and Metals in Ancient India vol II, D.K. Printworld, Delhi.
Blochmann, H. (trans and ed.) 1989. The A-in-IAkbari of Abul Fazl Allami, Low Price Pub, New Delhi (originally pub in 1927).
Bonnin, A. 1924. Tutenag and Paktong, Oxford University Press, Milford.
Bowman, S. G. E, M. R. Cowell and J. Cribb 1989. Two thousand years of coinage in China: an analytical survey, Journal of Historical Metallurgy Society 23 (1):25-30.
Brooke, J. C. 1850. Notes on the zinc mines of Jawar, Journal of the Asiatic Society of Bengal XIX (1-7): 212-215.
Caldwell. K. S. 1920. The result of analyses of certain ornaments found in Asura sites, Journal of Bihar and Orissa Research Society 6: 390-423.
Carsus, H. D. 1960. Historical background, In C. H. Mathewson (Ed.). Zinc, New York: American Chemical Society. Pp 1-8.
Chakrabarti, D. K. & Nayanjyot Lahiri. 1996. Copper and Its Alloys in Ancient India,Munshiram Manoharlal, Delhi.
Chatterjee, C. D. 1957. Gold and Brass coins of the Imperial Guptas, Journal of the UP Historical Society (New Series) 5 (2): 100-116.
Craddock, P. T. 1981. The Copper alloys of Tibet and their background, In Eds. W. A. Oddy and W. Zwalf. Aspect of Tibetan Metallurgy, British Museum Occasional Paper no 15, London Pp. 1-31, 125-137.
Craddock, P. T. 1995. Early Mining and Metal Production, Edinburgh University Press, Edinburgh.
Craddock, P. T., I. C. Freestone, L. K. Gurjar A. Middleton & L. Willies 1989. The Production of Lead, Silver and Zinc in Early India, In A. Hauptmann, E. Pernicka and G. Wagner (Eds.) Old World Archaeometallurgy, Selbstverlag des Deutschen Bergbau-Museums, Bochum Pp. 51-69.
Crookshank, H. 1947. Zawar silver-lead-zinc mines, Indian Minerals 1 :22-27.
Datt, Ram (commentary) 1900. Charak Samhita, Pt. Ram Datt Narayan Chaube Anath Chikitsalaya aur Pustakalaya Manik Chauk, Mathura.
Day, Joan 1973. Bristol Brass A History of the Industry, David and Charles: Newton Abbot, England.
Deo, S. B. 1973. Mahurjhari Excavation 1970-72, Nagpur University, Nagpur.
Deshpande, Vijay 1996. A note on Ancient zinc smelting on India and China, Indian Journal of History of Science 31 (3): 275-279
Erskine, K. D. 1908. Rajputana Gazetteers Vol II The Mewar Residency, Ajmer. pp.53
Freestone, I. C., P. T. Craddock, K. T. M. Hegde, M. J. Hughes and H. V. Paliwal. 1985. Zinc production at Zawar, Rajasthan. In P. T. Craddock and M. J. Hughes (Eds.). Furnaces and Smelting Technology in Antiquity, British Museum, London. Pp. 229-41.
Gairola, T. R. 1956. Bidri Ware, Ancient India 12: 16-18.
Gangopadhyay, A., T. R. Ramchandran and A. K. Biswas 1984. Phase studies on zinc residues of Ancient Indian origin, Transactions of the Indian Institute of Metals 37 (3): 234-241.
Gaur, R. C. 1983. Excavations at Atranjikhera: Early Civilizations of the Upper Ganga Basin,Aligarh Muslim University/Motilal Banarasidas, New Delhi.
Gurjar, L. K., P. T. Craddock, L. Willies and H. V. Paliwal. 2001. Zinc in In K. V. Mittal (Ed.) History of Technology in India vol III, Indian National Science Academy, Delhi. Pp. 621-38.
Habib, Irfan 2000. Joseph Needham and the history of Indian technology, Indian Journal of History of Science 35 (2): 245-274.
Halder, R. R. 1929-30. Samoli Inscription of the time of Siladitya (Vikram Sllmvat 703), Epigraphia Indica 20: 97-99.
Hary Falk 1991. Silver, Lead and Zinc in Early Indian Literature, South Asian Studies 7: 111-120.
Hegde, K. T. M. 1989. Zinc and Brass Production in Ancient India, Interdisciplinary Science Reviews 14(1): 86-96.
Hett, W. S. 1993 (Trans.). Aristotle on Marvellous Things Heard, Harvard University Press, Cambridge.
Hooja, R. 1994. Contacts, conflicts and coexistence: Bhils and non-Bhils in Southeastern Rajasthan, In B. Allchin (Ed.) Living Traditions, Oxford & IBH Pub., New Delhi, pp 125-140.
Hooja, R. and Vijay Kumar 1995. Aspects of the Early Copper Age in Rajasthan. In Raymond and Bridget Allchin (Eds.) South Asian Archaeology (pub. in 1997). Oxford and IBH, New Delhi. Pp. 323-339.
Jones, H. L. 1954 (translation). The Geography of Strabo (books XV and XVI) vol. VII, Harvard University Press, Cambridge.
Joshi, A. P. 1973. Analysis of copper and iron objects. In S. B. Deo Ed. Mahurjhari Excavation 1970-72, Nagpur University, Napur:. Pp 77.
Kachhawaha, O. P. 1992. History of Famines in Rajasthan (1900-1990 AD), Research Publishers, Jodhpur.
Kangle, R. P. 1960. The Kautilya Arthasastra vol I, Motilal Banarasidas, Delhi.
Kangle, R. P. 1972. The Kautilya Arthasastra vol II , Motilal Banarasidas, Delhi.
Kharakwal, J. S. 2005. Indus Civilization: an overview, In Toshiki Osada (Ed.) Occasional Paper 1 Linguistics, Archaeology and the Human Past, Research Institute for Humanity and Nature, Kyoto, Japan, Pp 41-86.
La Niece, S. and G. Martin 1987. The technical examination of Bidri Ware, Studies in Conservation 32: 97-101.
Lal, B. B., J. P. Joshi, B. K. Thapar and Madhubala 2003. Excavations at Kalibangan the Early Harappans, Archaeological Survey of India, Delhi.
Leoshko, Janice and Chandra L. Reedy 1994. Interdisciplinary Research on the Provenance of Eastern Indian Bronzes: Preliminary Findings, South Asian Studies 10: 25-35.
Malu, Kamala 1987. The History of Famines in Rajputana (1858-1900 AD), Himanshu Publication, Udaipur.
Marshall, Sir John 1951. Taxila An Illustrate Account of Archaeological Excavations (Vol. II. Minor Antiquities), University Press, Cambridge. pp 564- 571 .
Misra, V. N., V. S. Shinde, R. K. Mohanty, Lalit Pandey and Jeewan S. Kharakwal. 1997. Excavations at Balathal, District Udaipur, Rajasthan (1995-97), with special reference to Chalcolithic architecture, Man and Environment 22(2): 35-59.
Morgan, S. W. K. 1976. Zinc. Ellis Horwood, Chichester.
Nautiyal, V., D. P. Agrawal and R. V. Krishnamurthy 1981. Some new analysis on the protohistorical copper artifacts, Man and Environment 5: 48-51.
Neogi, P. 1979. Copper in Ancient India, Jananki Prakashan, Patna.
Ojha, G. S. H 1996-97. Udaipur Rajya ka Itihas, Rajasthani Granthagar vol. I (first published 1928 VS 1985) from Government Press Ajmer, Jodhpur, Rajasthan.
Pal, P. 1988 (Ed.). A Pot-Pourri of Indian Art, Marg Publications, Bombay.
Paliwal, H. V., L. K. Gurjar, and P. T. Craddock 1986. Zinc and brass in ancient India. Bulletin of Canadian Institute of Metals 885: 75-79.
Porter, Frank 1991. Zinc Hand Book Properties, Processing, and Use in Design, Marcel Dekker, Inc New York.
Raghunandan, R. K., B. K. Dhruva Rao and M. L. Singhal. 1981. Exploration for copper, Lead and Zinc ore in India, Bulletin of the Geological Survey of India Series A-Eeconomic Geology, no 47, Calcutta.
Ranawat, M. S. 1987 (Ed. And trans.). Muhnot Nainsi ki Khyat, Natnagar Sodh Sansthan, Sitamau (M. P., India). (description of mewar 1-81).
Rao, S. R. 1985. Lothal. Archaeological Survey of India, Delhi.
Ray, P. C. 1956. History of Hindu Chemistry. Indian Chemical Society, Calcutta.
Reedy, C. L. 1988. Determining the region of origin of Himalayan copper alloys status through technical analysis. In P. Pal (Ed.). A Pot-Pourri of Indian Art. Marg Publication, Bombay, Pp 75-98.
Reedy, C. L.1991a, Medieval Bronzes of the Himalayan Mountain Kingdoms, Journal of the Minerals, Metals & Materials Society 43 (12): 6-9.
Reedy, C. L., 1991b, Petrographic Analysis of Casting Core Materials for Provenance Studies of Copper Alloy Sculptures, Archaeomaterials 6 (2): 121-163.
Roy, S. C. 1920. Distribution and nature of Asur sites in Chota Nagpur, Journal of Bihar and Orissa Research Society 6: 390-423.
Sharma, Anant Ram (commentary) 2001. Susruta Samhita 2 vols, Chaukhambha Prakashan, Varanasi.
Sharma, D. P. and Madhuri Sharma 2000. Early Buddhist Metal Images of South Asia,Bharatiya Kala Prakashan, Delhi
Sastri, R. V. (commentary) 1997. Manusmriti, Vidya Vihar, Delhi.
Shinde, V. S., G. L. Possehl and S. S. Deshpande. 2001- 02. The ceramic assemblage in Protohistoric Mewar (Rajashtan), with special reference to Gilund and Balathal, Puratattva 32:5-24.
Shyamal Das, Kaviraj 1886. Veer Vinod. Vol I. (reprinted 1986), Moti Lal Banarasi Das, Delhi.
Shukla, A. V and R. D. Tripathi 2002. Carakasamhita of Agnivesa vol 2, Chaukhamba Sanskrit Prathishthan, Delhi.
Singh, R. P. 1947. Agricultural distress and insecurity in Rajputana during the 18th and 19th Centuries. Journal of Indian History 15 (2): 205-215.
Singh, R. N. 2004. Analyses of Metal Objects. In R. S. Bisht (Ed.) Early Farming Communities of the Kaimur, Publication Scheme, Jaipur, Pp 591-603.
Smith, V. A. 1906. Catalogue of the Coins in the Indian Museum Calcutta vol I, Clarendon Press, Oxford.
Sung, E-Tu Zen and Shiou-Chuan Sun 1966 (trans.). Chinese Technology in the Seventh Century (T'ien Kung K'ai-wu by Sung Ying-Hsing). Pennsylvania State University Press, Pennsylvania.
Strackzkk, J. A. and B. Srikantan 1967. Geology of Zawar lead-zinc area, Rajasthan, India. Memoirs of the GSI 92: 47-83.
Swarnakamal 1978. Metallic Art and Technology of Gujarat. Museum and Picture Gallery, Baroda.
Tewari, R. K. and N. K. Kavida 1984. Ancient mining activity around Aguncha village, Bhilwara district, Rajasthan, Man and Environment 8: 81-87.
Tondan, B. N. 1983. Phopnar Bronzes - a scientific study by atomic absorption, emission spectrographic analysis and their metallography, National Museum Bulletin,New Delhi 4, 5 and 6: 150-151.
Werner, O. 1970. Uber das Vorkommen von Zinc, Erzmetall 23: 259-269.
Weirong, Zhou 1993. A new study on the history of the use of zinc in China, Bulletin of the Metals and Museum 19: 49-53.
Weirong, Zhou and Fan Xiangxi 1994. Application of Zinc and Cadmium for the dating and authenticating of metal relics in ancient China, Bulletin of the Metals and Museum22: 16-21.
Willies, L., P. T. Craddock, L. K. Gurjar and K. T. M. Hegde 1984. Ancient lead and zinc mining in Rajasthan, India,
World Archaeology 16(2): 222- 233,
http://www.jstor.org/stable/124574.
Mirror: http://tinyurl.com/orhmlu4
Thomas Wilson curator of US National Museum had in 1894 presented a remarkable Annual Report on Swastika symbol and its migrations. This work is advanced further with the Indus Script decipherment of the Meluhha glosses: sattva 'glyph' Rebus:sattu, satavu, satuvu 'pewter' (Kannada) In the context of archaeometallurgical indicators, the svastika hieroglyph multiplex seems to have connoted an alloying process of zinc with other minerals to create pewter or brasses of various kinds. Svastika hypertexts appear in remarkable contexts of Indus Script Corpora which help prove the early significance of this hieroglyph related to metalcasters and turners' work involving creation of new alloys during the Bronze Age.
Focus of this note is on one hieroglyph: svastika evidenced on Indus Script Corpora and deriving the semantics of the hieroglyph and rebus-metonymy rendering in Indus Script cipher.
Svastika hieroglyph multiplex is a remarkable hypertext of Indus Script Corpora, which signify catalogus catalogorum of metalwork.
Svastika signifies zinc metal, spelter. This validates Thomas Wilson's indication --after a wide-ranging survey of migrations of the hieroglyph across Eurasia and across continents -- that svastika symbol connoted a commodity, apart from its being a hieroglyph, a sacred symbol in many cultures.
"Spelter, while sometimes used merely as a synonym for zinc, is often used to identify a zinc alloy. In this sense it might be an alloy of equal parts copper and zinc, i.e. a brass, used for hard soldering and brazing, or as an alloy, containing lead, that is used instead of bronze." https://en.wikipedia.org/wiki/Spelter
Hieroglyph: sattva 'svastika' glyph Rebus: sattu, satavu, satuvu 'pewter' (Kannada) సత్తుతపెల a vessel made of pewter ज&above;स्ति&below; । त्रपुधातुविशेषनिर्मितम् jasth जस्थ । त्रपु m. (sg. dat. jastas जस्तस्), zinc, spelter; pewter.
मेढा [ mēḍhā ] m A stake, esp. as forked. 2 A dense arrangement of stakes, a palisade, a paling. 3 A twist or tangle arising in thread or cord, a curl or snarl.(Marathi) Rebus: meḍ 'iron, copper' (Munda. Slavic)
dhollu ‘drummer’ (Western Pahari) Rebus: dul ‘cast metal’
The Meluhha gloss for 'five' is: taṭṭal Homonym is: ṭhaṭṭha brass (i.e. alloy of copper + zinc). Glosses for zinc are: sattu (Tamil), satta, sattva (Kannada) jasth जसथ् ।रपु m. (sg. dat. jastas ज्तस), zinc, spelter; pewter; zasath ् ज़स््थ् ्or zasuth ज़सुथ ्। रप m. (sg. dat. zastas ु ज़्तस),् zinc, spelter, pewter (cf. Hindī jast). jastuvu; । रपू्भवः adj. (f. jastüvü), made of zinc or pewter.(Kashmiri). Hence the hieroglyph: svastika repeated five times. Five svastika are thus read: taṭṭal sattva Rebus: zinc (for) brass (or pewter).
*ṭhaṭṭha1 ʻbrassʼ. [Onom. from noise of hammering brass?]N. ṭhaṭṭar ʻ an alloy of copper and bell metal ʼ. *ṭhaṭṭhakāra ʻ brass worker ʼ. 1.Pk. ṭhaṭṭhāra -- m., K. ṭhö̃ṭhur m., S. ṭhã̄ṭhāro m., P. ṭhaṭhiār, °rā m.2. P. ludh. ṭhaṭherā m., Ku. ṭhaṭhero m., N. ṭhaṭero, Bi. ṭhaṭherā, Mth. ṭhaṭheri, H.ṭhaṭherā m.(CDIAL 5491, 5493).
h182A, h182B
The drummer hieroglyph is associated with svastika glyph on this tablet (har609) and also on h182A tablet of Harappa with an identical text.
dhollu ‘drummer’ (Western Pahari) Rebus: dul ‘cast metal’. The 'drummer' hieroglyph thus announces a cast metal. The technical specifications of the cast metal are further described by other hieroglyphs on side B and on the text of inscription (the text is repeated on both sides of Harappa tablet 182).
kola 'tiger' Rebus: kol 'alloy of five metals, pancaloha' (Tamil). ḍhol ‘drum’ (Gujarati.Marathi)(CDIAL 5608) Rebus: large stone; dul ‘to cast in a mould’. Kanac ‘corner’ Rebus: kancu ‘bronze’. dula 'pair' Rebus: dul 'cast metal'. kanka ‘Rim of jar’ (Santali); karṇaka rim of jar’(Skt.) Rebus:karṇaka ‘scribe’ (Telugu); gaṇaka id. (Skt.) (Santali) Thus, the tablets denote blacksmith's alloy cast metal accounting including the use of alloying mineral zinc -- satthiya 'svastika' glyph.
sattu (Tamil), satta, sattva (Kannada) jasth जसथ् ।रपु m. (sg. dat. jastas ज्तस), zinc, spelter; pewter; zasath ् ज़स््थ् ्or zasuth ज़सुथ ्। रप m. (sg. dat. zastas ु ज़्तस),् zinc, spelter, pewter (cf. Hindī jast). jastuvu; । रपू्भवः adj. (f. jastüvü), made of zinc or pewter.(Kashmiri). Hence the hieroglyph: svastika repeated five times. Five svastika are thus read: taṭṭal sattva Rebus: zinc (for) brass (or pewter). *ṭhaṭṭha1 ʻbrassʼ. [Onom. from noise of hammering brass?]N. ṭhaṭṭar ʻ an alloy of copper and bell metal ʼ. *ṭhaṭṭhakāra ʻ brass worker ʼ. 1.Pk. ṭhaṭṭhāra -- m., K. ṭhö̃ṭhur m., S. ṭhã̄ṭhāro m., P. ṭhaṭhiār, °rā m.2. P. ludh. ṭhaṭherā m., Ku. ṭhaṭhero m., N. ṭhaṭero, Bi. ṭhaṭherā, Mth. ṭhaṭheri, H.ṭhaṭherā m.(CDIAL 5491, 5493).
The drummer hieroglyph is associated with svastika glyph on this tablet (har609) and also on h182A tablet of Harappa with an identical text.
dhollu ‘drummer’ (Western Pahari) Rebus: dul ‘cast metal’. The 'drummer' hieroglyph thus announces a cast metal. The technical specifications of the cast metal are further described by other hieroglyphs on side B and on the text of inscription (the text is repeated on both sides of Harappa tablet 182).
kola 'tiger' Rebus: kol 'alloy of five metals, pancaloha' (Tamil). ḍhol ‘drum’ (Gujarati.Marathi)(CDIAL 5608) Rebus: large stone; dul ‘to cast in a mould’. Kanac ‘corner’ Rebus: kancu ‘bronze’. dula 'pair' Rebus: dul 'cast metal'. kanka ‘Rim of jar’ (Santali); karṇaka rim of jar’(Skt.) Rebus:karṇaka ‘scribe’ (Telugu); gaṇaka id. (Skt.) (Santali) Thus, the tablets denote blacksmith's alloy cast metal accounting including the use of alloying mineral zinc -- satthiya 'svastika' glyph.
The distinction between pictorial motifs and signs gets blurred in many compositions presented in the script inscriptions.
Thus, a svastika appears together with an elephant or a tiger The 'svastika' is a pictorial and also a sign--Sign 148
Mohejodaro, tablet in bas relief (M-478)
m0478B tablet erga = act of clearing jungle (Kui) [Note image showing two men carrying uprooted trees].
Aḍaru twig; aḍiri small and thin branch of a tree; aḍari small branches (Ka.); aḍaru twig (Tu.)(DEDR 67). Aḍar = splinter (Santali); rebus: aduru = native metal (Ka.) Vikalpa: kūtī = bunch of twigs (Skt.) Rebus: kuṭhi = furnace (Santali) ḍhaṁkhara — m.n. ʻbranch without leaves or fruitʼ (Prakrit) (CDIAL 5524)
•era, er-a = eraka = ?nave; erako_lu = the iron axle of a carriage (Ka.M.); cf. irasu (Ka.lex.)
•era_ = claws of an animal that can do no harm (G.)
•era female, applied to women only, and generally as a mark of respect, wife; hopon era a daughter; era hopon a man’s family; manjhi era the village chief’s wife; gosae era a female Santal deity; bud.hi era an old woman; era uru wife and children; nabi era a prophetess; diku era a Hindu woman (Santali)
•Rebus: er-r-a = red; eraka = copper (Ka.) erka = ekke (Tbh. of arka) aka (Tbh. of arka) copper (metal); crystal (Ka.lex.) erako molten cast (Tu.lex.) agasa_le, agasa_li, agasa_lava_d.u = a goldsmith (Te.lex.)
Hieroglyph: Looking back: krammara 'look back' (Telugu) kamar 'smith, artisan' (Santali)
erka = ekke (Tbh. of arka) aka (Tbh. of arka) copper (metal); crystal (Ka.lex.) cf. eruvai = copper (Ta.lex.) eraka, er-aka = any metal infusion (Ka.Tu.);
^ Inverted V, m478 (lid above rim of narrow-necked jar)
The rimmed jar next to the tiger with turned head has a lid. Lid ‘ad.aren’; rebus: aduru ‘native metal’
karnika 'rim of jar' Rebus: karni 'supercargo' (Marathi) Thus, together, the jar with lid composite hieroglyhph denotes 'native metal supercargo'.
kuTi 'tree' Rebus: kuṭhi = (smelter) furnace (Santali)
eraka, hero = a messenger; a spy (G.lex.) kola ‘tiger, jackal’ (Kon.); rebus: kol working in iron, blacksmith, ‘alloy of five metals, panchaloha’ (Tamil) kol ‘furnace, forge’ (Kuwi) kolami ‘smithy’ (Te.) heraka = spy (Skt.); er to look at or for (Pkt.); er uk- to play 'peeping tom' (Ko.) Rebus: eraka ‘copper’ (Ka.) kōṭu branch of tree, Rebus: खोट [ khōṭa ] f A mass of metal (unwrought or of old metal melted down); an ingot or wedge.
karn.aka = handle of a vessel; ka_n.a_, kanna_ = rim, edge;
kan.t.u = rim of a vessel; kan.t.ud.iyo = a small earthen vessel
kan.d.a kanka = rim of a water-pot; kan:kha, kankha = rim of a vessel
svastika pewter (Kannada); jasta = zinc (Hindi) yasada (Jaina Pkt.)
karibha 'trunk of elephant' ibha 'elephant' Rebus: karba 'iron' (Tulu)
kola 'tiger' Rebus: kol 'working in iron' krammara 'turn back' Rebus: kamar 'smith'
heraka 'spy' Rebus: eraka 'moltencast, copper'
meDha 'ram' Rebus: meD 'iron' (Mu.Ho)
bAraNe ' an offering of food to a demon' (Tulu) Rebus: baran, bharat (5 copper, 4 zinc and 1 tin) (Punjabi. Bengali) bhaTa 'worshipper' Rebus: bhaTa 'furnace' baTa 'iron' (Gujarati)
saman 'make an offering (Santali) samanon 'gold' (Santali)
minDAl 'markhor' (Torwali) meDho 'ram' (Gujarati)(CDIAL 10120) Rebus: me~Rhet, meD 'iron' (Mu.Ho.Santali)
heraka 'spy' (Samskritam) Rebus:eraka 'molten metal, copper'
maNDa 'branch, twig' (Telugu) Rebus: maNDA 'warehouse, workshop' (Konkani)\karibha, jata kola Rebus: karba, ib, jasta, 'iron, zinc, metal (alloy of five metals)
maNDi 'kneeling position' Rebus: mADa 'shrine; mandil 'temple' (Santali)
Fig. 183. (After T. Wilson opcit)
HUT URN IN THE VATICAN MUSEUM.
“Burning altar” mark associated with
Swastikas. Etruria (Bronze Age). "They belonged to the Bronze Age, and antedated the Etruscan civilization. This was demonstrated by the finds at Corneto-Tarquinii. Tombs to the number of about 300, containing them, were found, mostly in 1880-81, at a lower level than, and were superseded by, the Etruscan tombs. They contained the weapons, tools, and ornaments peculiar to the Bronze Age—swords, hatchets, pins, fibulæ, bronze and pottery vases, etc., the characteristics of which were different from Etruscan objects of similar purpose, so they could be satisfactorily identified and segregated. The hut urns were receptacles for the ashes of the cremated dead, which, undisturbed, are to be seen in the museum. The vases forming part of this grave furniture bore the Swastika mark; three have two Swastikas, one three, one four, and another no less than eight." (T. Wilson opcit p.857)
Fig. 175. (After T Wilson opcit)
DETAIL OF ARCHAIC
BŒOTIAN VASE.
Serpents, crosses, and
Swastikas (normal, right,
left, and meander).
Goodyear, “Grammar of
the Lotus,” pl. 60, fig. 9
Fig. 174. (After T Wilson opcit)
ARCHAIC GREEK VASE WITH FIVE SWASTIKAS OF FOUR DIFFERENT FORMS.
Athens. Birch, “History of Ancient Pottery,” quoted by Waring in
“Ceramic Art in Remote Ages,” pl. 41, fig. 15; Dennis, “The
Cities and Cemeteries of Etruria,” i, p. 91. "The Swastika comes from India as an ornament in form of a cone (conique) of metal, gold, silver, or bronze gilt, worn on the ears (see G. Perrot: “Histoire de l’Art,” iii, p. 562 et fig. 384), and nose-rings (see S. Reinach: “Chronique d’Orient,” 3e série, t. iv, 1886). I was the first to make known the nose-ring worn by the goddess Aphrodite-Astarte, even at Cyprus. In the Indies the women still wear these ornaments in their nostrils and ears. The fellahin of Egypt also wear similar jewelry; but as Egyptian art gives us no example of the usage of these ornaments in antiquity, it is only from the Indies that the Phenicians could have borrowed them. The nose-ring is unknown in the antiquity of all countries which surrounded the island of Cyprus." (p.851, T Wildon opcit)
"The Swastika has been discovered in Greece and in the islands of the Archipelago on objects of bronze and gold, but the principal vehicle was pottery; and of these the greatest number were the painted vases. It is remarkable that the vases on which the Swastika appears in the largest proportion should be the oldest, those belonging to the Archaic period. Those already shown as having been found at Naukratis, in Egypt, are assigned by Mr. Flinders Petrie to the sixth and fifth centuries B. C., and their presence is accounted for by migrations from Greece." (p.839 T Wilson opcit)
"Whatever else the sign Swastika may have stood for, and however many meanings it may have had, it was always ornamental. It may have been used with any or all the above significations, but it was always ornamental as well. The Swastika sign had great extension and spread itself practically over the world, largely, if not entirely, in prehistoric times, though its use in some countries has continued into modern times." (T. Wilson, p.772)
Fig. 166. (After T Wilson opcit)
CYPRIAN VASE WITH SWASTIKAS AND FIGURES OF BIRDS.
Perrot and Chipiez, “History of Art in Phenicia and Cyprus,” II, p. 300, fig. 237;
Goodyear, “Grammar of the Lotus,” pl. 48, figs. 6, 12; Cesnola, “Cyprus, its
Ancient Cities, Tombs, and Temples,” Appendix by Murray, p. 412, pl. 44, fig. 34.
Fig. 158. (After T Wilson opcit)
CYPRIAN VASE WITH LOTUS AND
SWASTIKAS AND FIGURE OF BIRD.
Metropolitan Museum of Art, New York City.
Goodyear, “Grammar of the Lotus,” pl. 60, fig. 15.
Fig. 178.(After T Wilson opcit)
CYPRIAN VASE WITH FIGURES OF
BIRDS AND SWASTIKA IN PANEL.
Musée St. Germain. Ohnefalsch-Richter, Bull.
Soc. d’Anthrop., Paris, 1888, p. 674, fig. 6.
http://www.gutenberg.org/files/40812/40812-h/images/img214.jpg (After Fig. 201, T. Wilson, p.864)Spearhed with svastika (croix swasticale) and triskelion. Brandenburg. Germany. Waring, 'Ceramic art in remote age,' p. 44. fig. 21 and 'Viking age' I, fig. 336http://www.gutenberg.org/files/40812/40812-h/images/img215.jpgFig. 202 (T. Wilson opcit).
BRONZE PIN WITH SWASTIKA, POINTILLÉ,
FROM MOUND IN BAVARIA.
Chantre, Matériaux pour l’Histoire Primitive
et Naturelle de l’Homme, 1854, pp. 14, 120.
http://www.gutenberg.org/files/40812/40812-h/images/img228.jpg After Fig. 220 (T. Wilson opcit.) Stone altar with svastika on pedestal. France museum of Toulouse De Mortillet. 'Musee Prehistorique', fig. 1267
http://www.gutenberg.org/files/40812/40812-h/images/img239.jpg After Figs. 231 to 234 (T. Wilson, opcit.). Ancient Hindu coins with svastika, normal and ogee. Waring, 'Ceramic art in remote ages,' pl. 41, figs. 20-24
.http://www.gutenberg.org/files/40812/40812-h/images/img240.jpg After Fig. 235 (T. Wilson opcit). Ancient coin with svastika. Gaza. Palestine. Waring 'Ceramic art in remote ages,' pl. 42, fig.6
Fig. 32. (After T Wilson opcit)
FOOTPRINT OF BUDDHA WITH SWASTIKA, FROM AMARAVATI TOPE.
From a figure by Fergusson and Schliemann.
Plate 5. Buffalo with Swastika on Forehead. (After T. Wilson opcit)
Presented to Emperor of Sung Dynasty.
From a drawing by Mr. Li, presented to the U. S. National
Museum by Mr. Yang Yü, Chinese Minister, Washington, D. C. "In the Chinese language the sign of the Swastika is pronounced wan, and stands for “many,” “a great number,” “ten thousand,” “infinity,” and by a synecdoche is construed to mean “long life, a multitude of blessings, great happiness,” etc.; as is said in French, “mille pardons,” “mille remercîments,” a thousand thanks, etc." (T. Wilson opcit, p.800)
The possible migrations of the Swastika, and its appearance in widely separated countries and among differently cultured peoples, afford the principal interest in this subject to archæologists and anthropologists...The Swastika was certainly prehistoric in its origin. It was in extensive use during the existence of the third, fourth, and fifth cities of the site of ancient Troy, of the hill of Hissarlik; so also in the Bronze Age, apparently during its entire existence, throughout western Europe from the Mediterranean Sea to the Arctic Ocean...Professor Sayce is of the opinion that the Swastika was a Hittite symbol and passed by communication to the Aryans or some of their important branches before their final dispersion took place, but he agrees that it was unknown in Assyria, Babylonia, Phenicia, or among the Egyptians...Whether the Swastika was in use among the Chaldeans, Hittites, or the Aryans before or during their dispersion, or whether it was used by the Brahmins before the Buddhists came to India is, after all, but a matter of detail of its migrations; for it may be fairly contended that the Swastika was in use, more or less common among the people of the Bronze Age anterior to either the Chaldeans, Hittites, or the Aryans...Looking over the entire prehistoric world, we find the Swastika used on small and comparatively insignificant objects, those in common use, such as vases, pots, jugs, implements, tools, household goods and utensils, objects of the toilet, ornaments, etc., and infrequently on statues, altars, and the like. In Armenia it was found on bronze pins and buttons; in the Trojan cities on spindle-whorls; in Greece on pottery, on gold and bronze ornaments, and fibulæ. In the Bronze Age in western Europe, including Etruria, it is found on the common objects of life, such as pottery, the bronze fibulæ, ceintures, spindle-whorls, etc. (pp. 950, 951)
Source: Wilson, Thomas, 1894, The Swastika, the earliest known symbol and its migration. Annual Report, US National Museum, pages 757-1011. Washington, DC. Govt. Printing Office. http://www.gutenberg.org/files/40812/40812-h/40812-h.htm
Thomas Wilson, Curator, Prehistoric Anthropology, US National Museum. His work on the Svastika (spelt swastika) presented in Annual Report 1894 (pp. 763 to 1011) is available at http://www.gutenberg.org/files/40812/40812-h/40812-h.htm (Photo from an obituary written by OT Mason, 1902. After Fig. 10 in: http://www.sil.si.edu/smithsoniancontributions/Anthropology/pdf_hi/SCtA-0048.pdf
Thomas Wilson notes in the Preface: "The principal object of this paper has been to gather and put in a compact form such information as is obtainable concerning the Swastika, leaving to others the task of adjustment of these facts and their[Pg 764] arrangement into an harmonious theory. The only conclusion sought to be deduced from the facts stated is as to the possible migration in prehistoric times of the Swastika and similar objects. No conclusion is attempted as to the time or place of origin, or the primitive meaning of the Swastika, because these are considered to be lost in antiquity. The straight line, the circle, the cross, the triangle, are simple forms, easily made, and might have been invented and re-invented in every age of primitive man and in every quarter of the globe, each time being an independent invention, meaning much or little, meaning different things among different peoples or at different times among the same people; or they may have had no settled or definite meaning. But the Swastika was probably the first to be made with a definite intention and a continuous or consecutive meaning, the knowledge of which passed from person to person, from tribe to tribe, from people to people, and from nation to nation, until, with possibly changed meanings, it has finally circled the globe." (ibid., p. 764)
In the historical periods, starting from ca. 3rd cent. BCE, some hieroglyphs of Indus Script get venerated as sacred symbols. This cultural phenomenon is explained by the occurrence -- in Jaina Ananta gumpha of Khandagiri caves -- of svastika hieroglyph together with 'lathe/furnace standard device' and 'mollusc' component in hieroglyph-multiplex variously designated by art historians as s'rivatsa/nandipada /triratna.
Why did Indus script hieroglyphs -- e.g., svastika, portable furnace, pair of fish, fish tied to a pair of molluscs, safflower, pair of fish, fish tail -- get venerated as sacred symbols, displayed on homage tablets, say, on the Jaina AyagapaTTa अयागपट्ट of Kankali Tila, Mathura, ca. 1st or 3rd century BCE?
The context is clear and unambiguous from a pair of glosses of Indian sprachbund attested in Kota language: kole.l 'smithy' kole.l 'temple'. Indus script hieroglyphs which signified products and resources of a smithy (e.g., minerals, metals, alloys, smelters, furnaces, supercargo) also signified the cosmic phenomenon held in awe by the Bharatam Janam, metlcaster folk that mere dhatu 'minerals or earth stones or sand' could upon smelting yield metal implements, and weapons. The operations in a smithy/forge became a representation of a cosmic dance. Hence, kole.l signified both a smithy and a temple. Srivatsa with kanka, 'eyes' (Kui). Begram ivories. Plate 389 Reference: Hackin, 1954, fig.195, no catalog N°. According to an inscription on the southern gate of Sanchi stupa,
it has been carved by ivory carvers of Vidisha.Southern Gateway panel information:West pillar Front East Face has an inscription. Vedisakehi dantakarehi rupa-kammam katam - On the border of this panel – Epigraphia Indica vol II – written in Brahmi, language is Pali – the carving of this sculpture is done by the ivory carvers of Vedisa (Vidisha). http://puratattva.in/2012/03/21/sanchi-buddham-dhammam-sangahm-5-1484 Ta. kaṇ eye, aperture, orifice, star of a peacock's tail. Ma. kaṇ, kaṇṇu eye, nipple, star in peacock's tail, bud. Ko. kaṇ eye. To. koṇ eye, loop in string. Ka. kaṇ eye, small hole, orifice. Koḍ. kaṇṇï id. Pe. kaṇga (pl. -ŋ, kaṇku) id. Manḍ. kan (pl. -ke) id. Kui kanu (pl. kan-ga), (K.) kanu (pl. kaṛka) id. Kuwi (F.) kannū (S.) kannu (pl. kanka), (Su. P. Isr.) kanu (pl. kaṇka) id. (DEDR 1159).
śrivatsa symbol [with its hundreds of stylized variants, depicted on Pl. 29 to 32] occurs in Bogazkoi (Central Anatolia) dated ca. 6th to 14th cent. BCE on inscriptions Pl. 33, Nandipāda-Triratna at: Bhimbetka, Sanchi, Sarnath and Mathura] Pl. 27, Svastika symbol: distribution in cultural periods] The association of śrivatsa with ‘fish’ is reinforced by the symbols binding fish in Jaina āyāgapaṭas (snake-hood?) of Mathura (late 1st cent. BCE). śrivatsa symbol seems to have evolved from a stylied glyph showing ‘two fishes’. In the Sanchi stupa, the fish-tails of two fishes are combined to flank the ‘śrivatsa’ glyph. In a Jaina āyāgapaṭa, a fish is ligatured within the śrivatsa glyph, emphasizing the association of the ‘fish’ glyph with śrivatsa glyph.
(After Plates in: Savita Sharma, 1990, Early Indian symbols, numismatic evidence, Delhi, Agama Kala Prakashan; cf. Shah, UP., 1975, Aspects of Jain Art and Architecture, p.77)
Khandagiri caves (2nd cent. BCE) Cave 3 (Jaina Ananta gumpha). Fire-altar?, śrivatsa, svastika
(hieroglyphs) (King Kharavela, a Jaina who ruled Kalinga has an inscription dated 161 BCE) contemporaneous with Bharhut and Sanchi and early Bodhgaya.
Tree shown on a tablet from Harappa. [Pl. 39, Savita Sharma, opcit. Tree symbol (often on a platform) on punch-marked coins; a symbol recurring on many tablets showing Sarasvati hieroglyphs].
Ayagapatta, Kankali Tila, Mathura.
The piece is now in the Lucknow Museum.
An ayagapata or Jain homage tablet, with small figure of a tirthankara in the centre and inscription below, from Mathura. "Photograph taken by Edmund William Smith in 1880s-90s of a Jain homage tablet. The tablet was set up by the wife of Bhadranadi, and it was found in December 1890 near the centre of the mound of the Jain stupa at Kankali Tila. Mathura has extensive archaeological remains as it was a large and important city from the middle of the first millennium onwards. It rose to particular prominence under the Kushans as the town was their southern capital. The Buddhist, Brahmanical and Jain faiths all thrived at Mathura, and we find deities and motifs from all three and others represented in sculpture. In reference to this photograph in the list of photographic negatives, Bloch wrote that, "The technical name of such a panel was ayagapata [homage panel]." The figure in the centre is described as a Tirthamkara, a Jain prophet. The piece is now in the Lucknow Museum." http://www.bl.uk/onlinegallery/onlineex/apac/photocoll/a/largeimage58907.html View of the Jaina stupa excavated at Kankali Tila, Mathura.
Ayagapata (After Huntington)Jain votive tablet from Mathurå. From Czuma 1985, catalogue number 3. Fish-tail is the hieroglyph together with svastika hieroglyph, fish-pair hieroglyph, safflower hieroglyph, cord (tying together molluscs and arrow?)hieroglyph multiplex, lathe multiplex (the standard device shown generally in front of a one-horned young bull on Indus Script corpora), flower bud (lotus) ligatured to the fish-tail. All these are venerating hieroglyphs surrounding the Tirthankara in the central medallion.
Pali etyma point to the use of 卐 with semant. 'auspicious mark'; on the Sanchi stupa; the cognate gloss is: sotthika, sotthiya 'blessed'.
Or. ṭaü ʻ zinc, pewter ʼ(CDIAL 5992). jasta 'zinc' (Hindi) sathya, satva 'zinc' (Kannada) The hieroglyph used on Indus writing consists of two forms: 卐卍. Considering the phonetic variant of Hindi gloss, it has been suggested for decipherment of Meluhha hieroglyphs in archaeometallurgical context that the early forms for both the hieroglyph and the rebus reading was: satya.
The semant. expansion relating the hieroglyph to 'welfare' may be related to the resulting alloy of brass achieved by alloying zinc with copper. The brass alloy shines like gold and was a metal of significant value, as significant as the tin (cassiterite) mineral, another alloying metal which was tin-bronze in great demand during the Bronze Age in view of the scarcity of naturally occurring copper+arsenic or arsenical bronze.
I suggest that the Meluhha gloss was a phonetic variant recorded in Pali etyma: sotthiya. This gloss was represented on Sanchi stupa inscription and also on Jaina ayagapata offerings by worshippers of ariya, ayira dhamma, by the same hieroglyph (either clockwise-twisting or anti-clockwise twisting rotatory symbol of svastika). Linguists may like to pursue this line further to suggest the semant. evolution of the hieroglyph over time, from the days of Sarasvati-Sindhu civilization to the narratives of Sanchi stupa or Ayagapata of Kankali Tila.
स्वस्ति [ svasti ] ind S A particle of benediction. Ex. राजा तुला स्वस्ति असो O king! may it be well with thee!; रामाय स्वस्ति रावणाय स्वस्ति! 2 An auspicious particle. 3 A term of sanction or approbation (so be it, amen &c.) 4 Used as s n Welfare, weal, happiness.स्वस्तिक [ svastika ] n m S A mystical figure the inscription of which upon any person or thing is considered to be lucky. It is, amongst the जैन, the emblem of the seventh deified teacher of the present era. It consists of 卍. 2 A temple of a particular form with a portico in front. 3 Any auspicious or lucky object.(Marathi)
svasti f. ʻ good fortune ʼ RV. [su -- 2, √as1]Pa. suvatthi -- , sotthi -- f. ʻ well -- being ʼ, NiDoc. śvasti; Pk. satthi -- , sotthi -- f. ʻ blessing, welfare ʼ; Si. seta ʻ good fortune ʼ < *soti (H. Smith EGS 185 < sustha -- ). svastika ʻ *auspicious ʼ, m. ʻ auspicious mark ʼ R. [svastí -- ]Pa. sotthika -- , °iya -- ʻ auspicious ʼ; Pk. satthia -- , sot° m. ʻ auspicious mark ʼ; H. sathiyā, sati° m. ʻ mystical mark of good luck ʼ; G. sāthiyɔ m. ʻ auspicious mark painted on the front of a house ʼ.(CDIAL 13915, 13916)
Nibbānasotthi (welfare). saccena suvatthi hotu nibbānaŋ Sn 235.Sotthi (f.) [Sk. svasti=su+asti] well -- being, safety, bless ing A iii.38=iv.266 ("brings future happiness"); J i.335; s. hotu hail! D i.96; sotthiŋ in safety, safely Dh 219 (=anupaddavena DhA iii.293); Pv iv.64(=nirupaddava PvA 262); Sn 269; sotthinā safely, prosperously D i.72, 96; ii.346; M i.135; J ii.87; iii.201. suvatthi the same J iv.32. See [sotthika & sovatthika](sotthika_&_sovatthika). -- kamma a blessing J i.343. -- kāra an utterer of blessings, a herald J vi.43. -- gata safe wandering, prosperous journey Mhvs 8, 10; sotthigamana the same J i.272. -- bhāva well -- being, prosperity, safety J i.209; iii.44; DhA ii.58; PvA 250. -- vācaka utterer of blessings, a herald Miln 359. -- sālā a hospital Mhvs 10, 101.Sotthika (& ˚iya) (adj.) [fr. sotthi] happy, auspicious, blessed, safe VvA 95; DhA ii.227 (˚iya; in phrase dīgha˚ one who is happy for long [?]).Sotthivant (adj.) [sotthi+vant] lucky, happy, safe Vv 8452.Sovatthika (adj.) [either fr. sotthi with diaeresis, or fr. su+atthi+ka=Sk. svastika] safe M i.117; Vv 187 (=sotthika VvA 95); J vi.339 (in the shape of a svastika?); Pv iv.33 (=sotthi -- bhāva -- vāha PvA 250). -- âlankāra a kind of auspicious mark J vi.488. (Pali)
...
[quote]Cunningham, later the first director of the Archaeological Survey of India, makes the claim in: The Bhilsa Topes (1854). Cunningham, surveyed the great stupa complex at Sanchi in 1851, where he famously found caskets of relics labelled 'Sāriputta' and 'Mahā Mogallāna'. [1] The Bhilsa Topes records the features, contents, artwork and inscriptions found in and around these stupas. All of the inscriptions he records are in Brāhmī script. What he says, in a note on p.18, is: "The swasti of Sanskrit is the suti of Pali; the mystic cross, or swastika is only a monogrammatic symbol formed by the combination of the two syllables, su + ti = suti." There are two problems with this. While there is a word suti in Pali it is equivalent to Sanskrit śruti'hearing'. The Pali equivalent ofsvasti is sotthi; and svastika is either sotthiya or sotthika. Cunningham is simply mistaken about this. The two letters su + ti in Brāhmī script are not much like thesvastika. This can easily been seen in the accompanying image on the right, where I have written the word in the Brāhmī script. I've included the Sanskrit and Pali words for comparison. Cunningham's imagination has run away with him. Below are two examples of donation inscriptions from the south gate of the Sanchi stupa complex taken from Cunningham's book (plate XLX, p.449). "Note that both begin with a lucky svastika. The top line reads 卐 vīrasu bhikhuno dānaṃ - i.e. "the donation of Bhikkhu Vīrasu." The lower inscription also ends with dānaṃ, and the name in this case is perhaps pānajāla (I'm unsure about jā). Professor Greg Schopen has noted that these inscriptions recording donations from bhikkhus and bhikkhunis seem to contradict the traditional narratives of monks and nuns not owning property or handling money. The last symbol on line 2 apparently represents the three jewels, and frequently accompanies such inscriptions...Müller [in Schliemann(2), p.346-7] notes that svasti occurs throughout 'the Veda' [sic; presumably he means the Ṛgveda where it appears a few dozen times]. It occurs both as a noun meaning 'happiness', and an adverb meaning 'well' or 'hail'. Müller suggests it would correspond to Greek εὐστική (eustikē) from εὐστώ (eustō), however neither form occurs in my Greek Dictionaries. Though svasti occurs in the Ṛgveda, svastika does not. Müller traces the earliest occurrence of svastika to Pāṇini's grammar, the Aṣṭādhyāyī, in the context of ear markers for cows to show who their owner was. Pāṇini discusses a point of grammar when making a compound using svastika and karṇa, the word for ear. I've seen no earlier reference to the word svastika, though the symbol itself was in use in the Indus Valley civilisation.[unquote]
1. Cunningham, Alexander. (1854) The Bhilsa topes, or, Buddhist monuments of central India : comprising a brief historical sketch of the rise, progress, and decline of Buddhism; with an account of the opening and examination of the various groups of topes around Bhilsa. London : Smith, Elder. [possibly the earliest recorded use of the word swastika in English].2. Schliemann, Henry. (1880). Ilios : the city and country of the Trojans : the results of researches and discoveries on the site of Troy and through the Troad in the years 1871-72-73-78-79. London : John Murray.
http://jayarava.blogspot.in/2011/05/svastika.html
http://bharatkalyan97.blogspot.in/2015/06/deciphering-indus-script-meluhha.html
Views of Koenraad Elst and Carl Sagan on Svastika symbol
"Koenraad Elst points out that swastika had been a fairly prevalent symbol of the pre-Christian Europe and remained pretty much in vogue even until the 20th century. British troops preparing to help Finland in the war of winter 1939-40 against Soviet aggression painted swastikas, then a common Finnish symbol, on their airplanes. It was also a symbol of Austrian and German völkisch subculture where it was associated with the celebration of the summer solstice. In 1919, the dentist Friedrich Krohn adopted it as the symbol of the DAP because it was understood as the symbol of the Nordic culture. Hitler adopted a variant of the DAP symbol and added the three color scheme of the Second Reich to rival the Communist hammer and sickle as a psychological weapon of propaganda (Elst, Koenraad: The Saffron Swastika, Volume 1, pp. 31-32)...Besides pre-Christian and Christian Europe, the swastika has been depicted across many ancient cultures over several millennia. Carl Sagan infers that it was inspired by the sightings of comets by the ancients. In India, it was marked on doorsteps as it was believed to bring good fortune. It was prevalent worldwide by the second millennium as Heinrich Schliemann, the discoverer of Troy, found. It was depicted in Buddhist caverns in Afghanistan. Jaina, who emphasize on avoidance of harm, have considered it a sign of benediction. The indigenous peoples of North America depicted it in their pottery, blankets, and beadwork. It was widely used in Hellenic Europe and Brazil. One also finds depictions of the swastika, turning both ways, from the seals of the Indus Valley Civilization (IVC) dating back to 2,500 BCE, as well as on coins in the 6th century BCE Greece (Sagan, Carl and Druyan, Ann: Comet, pp. 181-186)" loc.cit.: http://indiafacts.co.in/the-swastika-is-not-a-symbol-of-hatred/
Svastika is a hieroglyph used in Indus Script corpora.
It denoted jasta, 'zinc'
Mirror:
https://www.academia.edu/8362658/Meluhha_hieroglyph_5_svastika_read_rebus_tuttha_sulphate_of_zinc
A hieroglyph which is repeatedly deployed in Indus writing is svastika. What is the ancient reading and meaning?
I suggest that it reads sattva. Its rebus rendering and meaning is zastas 'spelter or sphalerite or sulphate of zinc.'
Zinc occurs in sphalerite, or sulphate of zinc in five colours.
The Meluhha gloss for 'five' is: taṭṭal Homonym is: ṭhaṭṭha ʻbrassʼ(i.e. alloy of copper + zinc).
Glosses for zinc are: sattu (Tamil), satta, sattva (Kannada) jasth जस्थ । त्रपु m. (sg. dat. jastas जस्तस्), zinc, spelter; pewter; zasath ज़स््थ् or zasuth ज़सुथ् । त्रपु m. (sg. dat. zastas ज़स्तस्), zinc, spelter, pewter (cf. Hindī jast).
jastuvu; । त्रपूद्भवः adj. (f. jastüvü), made of zinc or pewter.(Kashmiri).
Hence the hieroglyph: svastika repeated five times. Five svastika are thus read: taṭṭal sattva Rebus: zinc (for) brass (or pewter).See five svastika on Mohenjodaro prism tablet (m488) The text inscription on the tablet reads: cast bronze supercargo. It is notable that sphalerite can also be of high iron varieties and hence, the use of ibha 'elephant' Rebus: ib 'iron' together with svastika on a Mohenjodaro tablet.
Hence, the gloss to denote sulphate of zinc: తుత్తము [ tuttamu ] or తుత్తరము tuttamu. [Tel.] n. Vitriol. పాకతుత్తము white vitriol, sulphate of zinc. మైలతుత్తము sulphate of copper, blue-stone. తుత్తినాగము [ tuttināgamu ] tutti-nāgamu. [Chinese.] n. Pewter. Zinc. లోహవిశేషము.துத்தம்² tuttam, n. < tuttha. 1. A prepared arsenic, vitriol, sulphate of zinc or copper; வைப்புப்பாஷாணவகை. (சூடா.) 2. Tutty, blue or white vitriol used as collyrium; கண் மருந்தாக உதவும் துரிசு. (தைலவ. தைல. 69.)
சத்து³ cattu, n. prob. šilā-jatu. 1. A variety of gypsum; கர்ப்பூரசிலாசத்து. (சங். அக.) 2. Sulphate of zinc; துத்தம். (பைஷஜ. 86.)
Hieroglyphs, allographs:
தட்டல் taṭṭal Five, a slang term; ஐந்து என்பதன் குழூஉக்குறி. (J.)
தட்டு¹-தல் taṭṭu-To obstruct, hinder, ward off; தடுத்தல். தகையினாற் காறட்டி வீழ்க்கும் (கலித். 97, 17) Tu. taḍè hindrance, obstacle Ma. taṭa resistance, warding off (as with a shield), what impedes, resists, stays, or stops, a prop Ka. taḍa impeding, check, impediment, obstacle, delay(DEDR 3031)
Ta. taṭṭi screen as of cuscuss grass, rattan, etc., tatty; taṭṭu screen folded or plain;taṭukku screen, mat, seat. Ma. taṭṭi screen, tatty, mat used as a door; taṭukku little mat for sitting on, as of school children. Ka. taṭṭi frame of bamboos, etc., a tatti, matting, bamboo mat; taḍaku, taḍike frame of bamboos, straw, leaves, etc., used as a door, blind, screen, etc., tatty; daḍḍi tatty, screen, curtain, what screens or encloses, cage; flat roof of a house. Tu. taṭṭi screen or blind made of split bamboos, cadjan, palm-leaves, etc.; daḍèscreen, blind; taḍamè a kind of stile or narrow entrance to a garden. Kor. (O.) taḍambe a gate. Te. taḍaka hurdle or tatty, screen made of bamboos, etc.; daḍi screen of mats, leaves or the like, fence. Kol. (SR.) taḍkā plaited bamboos, thatch; (Kin.) taṛka mat; (W.) daṭam door Pali taṭṭikā- palmleaf matting; Pkt. (DNM) ṭaṭṭī- fence; Turner, CDIAL, no. 5990 (DEDR 3036)1. Pa. taṭṭikā -- f. ʻ mat ʼ, taṭṭaka -- m. ʻ flat bowl ʼ; Pk. taṭṭī -- f. ʻ hedge ʼ, ṭaṭṭī -- , °ṭiā -- f. ʻ screen, curtain ʼ; K. ṭāṭh, dat. °ṭas m. ʻ sackcloth ʼ; S. ṭaṭī f. ʻ Hindu bier ʼ; L. traṭṭī f. ʻ screen ʼ; P. taraṭṭī, ṭaṭṭī f. ʻ bamboo matting, screen ʼ(CDIAL 5990)
*ṭhaṭṭh ʻ strike ʼ. [Onom.?]N. ṭhaṭāunu ʻ to strike, beat ʼ, ṭhaṭāi ʻ striking ʼ, ṭhaṭāk -- ṭhuṭuk ʻ noise of beating ʼ; H.ṭhaṭhānā ʻ to beat ʼ, ṭhaṭhāī f. ʻ noise of beating ʼ.(CDIAL 5490)
Ta. taṭam road, way, path, route, gate, footstep.
Ir. (Bhattacharya 1958; Z.) daḍḍa road. Ko. daṛv path, way.(DEDR 3014)
Rebus readings:
தட்டான்¹ taṭṭāṉ, n. < தட்டு-. [M. taṭṭān.] Gold or silver smith, one of 18 kuṭimakkaḷ, q. v.; பொற்கொல்லன். (திவா.) Te. taṭravã̄ḍu goldsmith or silversmith. Cf. Turner,CDIAL, no. 5490, *ṭhaṭṭh- to strike; no. 5493, *ṭhaṭṭhakāra- brassworker; √ taḍ, no. 5748, tāˊḍa- a blow; no. 5752, tāḍáyati strikes.
*ṭhaṭṭha ʻ brass ʼ. [Onom. from noise of hammering brass? -- N. ṭhaṭṭar ʻ an alloy of copper and bell metal ʼ. *ṭhaṭṭhakāra ʻ brass worker ʼ. 2. *ṭhaṭṭhakara -- 1. Pk. ṭhaṭṭhāra -- m., K. ṭhö̃ṭhur m., S. ṭhã̄ṭhāro m., P. ṭhaṭhiār, °rā m.2. P. ludh. ṭhaṭherā m., Ku. ṭhaṭhero m., N. ṭhaṭero, Bi. ṭhaṭherā, Mth. ṭhaṭheri, H. ṭhaṭherā m.(CDIAL 5491, 5493)
Tatta1 [pp. of tapati] heated, hot, glowing; of metals: in a melted state (cp. uttatta) Aii.122≈(tattena talena osiñcante, as punishment); Dh 308 (ayoguḷa); J ii.352 (id.); iv.306 (tattatapo "of red -- hot heat," i. e. in severe self -- torture); Miln 26, 45 (adv. red -- hot); PvA 221 (tatta -- lohasecanaŋ the pouring over of glowing copper, one of the punishments in Niraya).(Pali)
தட்டுமுட்டு taṭṭu-muṭṭu, n. Redupl. of தட்டு² [T. M. Tu. taṭṭumuṭṭu.] 1. Furniture, goods and chattels, articles of various kinds; வீட்டுச்சாமான்கள். தட்டுமுட்டு விற்று மாற்றாது (பணவிடு. 225). 2. Apparatus, tools, instruments, utensils; கருவி கள். 3. Luggage, baggage; மூட்டைகள். (W.)Ta. taṭṭumuṭṭu furniture, goods and chattels, utensils, luggage. Ma. taṭṭumuṭṭu kitchen utensils, household stuff. Tu. taṭṭimuṭṭu id.(DEDR 3041)
அஞ்சுவர்ணத்தோன் añcu-varṇattōṉ, n. < id. +. Zinc;
துத்தநாகம். (R.) அஞ்சுவண்ணம் añcu-vaṇṇam, n. < அஞ்சு +. A trade guild; ஒருசார் வணிகர் குழு. (T. A. S. ii, 69.) அஞ்சுபஞ்சலத்தார் añcu-pañcalattār
, n. < அஞ்சு + பஞ்சாளத்தார். Pañca-kammāḷar, the five artisan classes; பஞ்சகம்மாளர். (I. M. P. Cg. 371.)
Sphalerite or zinc sulfide
Its color is usually yellow, brown, or gray to gray-black, and it may be shiny or dull. Itsluster is adamantine, resinous to submetallic for high iron varieties. It has a yellow or light brown streak, a Mohs hardness of 3.5–4, and a specific gravity of 3.9–4.1. Some specimens have a red iridescence within the gray-black crystals; these are called "ruby sphalerite." The pale yellow and red varieties have very little iron and are translucent. http://en.wikipedia.org/wiki/Sphalerite
Begram ivory. Hackin 1939, p.77, fig.124 Ivory?The plaque depicts an elephant and a winged lion facing each other.. The scene is bordered on both sides by a wavy leaf or branch. The lion stands on the right side facing left, its front paw held up and touching the elephant's forehead. Bronze tripod. Begram 26, Kabul Museum. From Hackin, MDAFA XI, 1954, fig. 340. Legs of the tripod are tiger paws. kola 'tiger' Rebus: kol 'working in iron' kolhe 'smelters'. Malt. kanḍo stool, seat. (DEDR 1179) Rebus: kaṇḍ 'fire-altar' (Santali) kāṇḍa 'tools, pots and pans and metal-ware' (Marathi)
ibha m. ʻ elephant ʼ Mn. Pa. ibha -- m., Pk. ibha -- , iha -- , Si. iba Geiger EGS 22: rather ← Pa.(CDIAL 1587) Rebus: ib 'iron' (Santali)
2135 Kur. xolā tail. Malt. qoli id.
kul ‘tiger’ (Santali); kōlu id. (Telugu) kōlupuli = Bengal tiger (Te.) कोल्हा [ kōlhā ] कोल्हें [kōlhēṃ] A jackal (Marathi) Rebus: kol, kolhe, ‘the koles, iron smelters speaking a language akin to that of Santals’ (Santali) kol ‘working in iron’ (Tamil) kōla1 m. ʻ name of a degraded tribe ʼ Hariv.
Pk. kōla -- m.; B. kol ʻ name of a Muṇḍā tribe ʼ.(CDIAL 3532)
Ta. kol working in iron, blacksmith; kollaṉ blacksmith.
Ma. kollan blacksmith, artificer. Ko. kole·l smithy, temple in Kota village. To. kwala·l Kota smithy. Ka. kolime, kolume, kulame, kulime, kulume, kulme fire-pit, furnace; (Bell.; U.P.U.) konimi blacksmith(Gowda) kolla id. Koḍ. kollë blacksmith. Te. kolimi furnace. Go. (SR.)kollusānā to mend implements; (Ph.) kolstānā, kulsānā to forge; (Tr.) kōlstānā to repair (of ploughshares); (SR.) kolmi smithy (Voc. 948). Kuwi (F.) kolhali to forge.(DEDR 2133)
Fortification wall of Begram. From Ghirshman, Begram, 1946. Fortification compares with the fortification in hundreds of Sarasvati-Sindhu (Hindu) civilization sites, e.g. Dholavira, Surkotada, Khirsara
(After Fig. 6 in Sanjyot Mehendale)
Map of South Asia in the Magadhan and Achaemenid periods. From J. Schwartzber, A historical atlas of south Asia, 1978
త్వష్ట [ tvaṣṭa ] tvashṭa. [Skt.] n. A carpenter, వడ్లవాడు. The maker of the universe. విశ్వకర్త. One of the 12 Adityas, ద్వాదశాదిత్యులలో నొకడు.వడ్రంగి, వడ్లంగి, వడ్లవాడు [ vaḍraṅgi, vaḍlaṅgi, vaḍlavāḍu ] or వడ్లబత్తుడు vaḍrangi. [Tel.] n. A carpenter. వడ్రంగము, వడ్లపని, వడ్రము or వడ్లంగితనము vaḍrangamu. n. The trade of a carpenter. వడ్లవానివృత్తి. వడ్రంగిపని. వడ్రంగిపిట్ట or వడ్లంగిపిట్ట vaḍrangi-piṭṭa. n. A woodpecker. దార్వాఘాటము. వడ్లకంకణము vaḍla-kankaṇamu. n. A curlew. ఉల్లంకులలో భేదము. వడ్లత or వడ్లది vaḍlata. n. A woman of the carpenter caste. వర్ధకి [ vardhaki ] vardhaki. [Skt.] n. A carpenter. వడ్లవాడు.
Ta. taṭṭu (taṭṭi-) to knock, tap, pat, strike against, dash against, strike, beat, hammer, thresh; n. knocking, patting, breaking, striking against, collision; taṭṭam clapping of the hands; taṭṭal knocking, striking, clapping, tapping, beating time; taṭṭāṉ gold or silver smith; fem. taṭṭātti. Ma. taṭṭu a blow, knock; taṭṭuka to tap, dash, hit, strike against, knock; taṭṭān goldsmith;
fem. taṭṭātti; taṭṭāran washerman; taṭṭikka to cause to hit; taṭṭippu beating.
Ko. taṭ- (tac-) to pat, strike, kill, (curse) affects, sharpen, disregard (words); taṭ a·ṛ- (a·c) to stagger from fatigue. To. toṭ a slap; toṭ- (toṭy-) to strike (with hammer), pat, (sin) strikes; toṛ- (toṭ-) to bump foot; toṭxn, toṭxïn goldsmith; fem. toṭty, toṭxity; toṭk ïn- (ïḏ-) to be tired, exhausted. Ka. taṭṭu to tap, touch, come close, pat, strike, beat, clap, slap, knock, clap on a thing (as cowdung on a wall), drive, beat off or back, remove; n. slap or pat, blow, blow or knock of disease, danger, death, fatigue, exhaustion. Koḍ. taṭṭ- (taṭṭi-) to touch, pat, ward off, strike off, (curse) effects; taṭṭë goldsmith; fem. taṭṭati (Shanmugam). Tu. taṭṭāvuni to cause to hit, strike. Te. taṭṭu to strike, beat, knock, pat, clap, slap; n. stripe, welt; taṭravã̄ḍu goldsmith or silversmith.Kur. taṛnā (taṛcas) to flog, lash, whip. Malt. taṛce to slap. Cf. 3156 Ka. tāṭu. / Cf. Turner, CDIAL, no. 5490, *ṭhaṭṭh- to strike; no. 5493, *ṭhaṭṭhakāra- brassworker; √ taḍ, no. 5748, tāˊḍa- a blow; no. 5752, tāḍáyati strikes. (DEDR 3039)
Ek Mukhi Siva Linga, Kushana period (Government Museum, Lucknow). The Siva Linga is one of the most profound symbols of humankind. It is the "mark" of the unmanifest eternal manifesting itself in innumerable forms of the world. Simultaneously, it embodies the vital forces of nature in the manifest world.
http://www.frontline.in/static/html/fl2420/stories/20071019505206400.htm
"Yolamira, silver drachm, early type.....c. 125-150 AD......Diademed bust right, dotted border /Swastika right, Brahmi legend ..... Yolamirasa Bagarevaputasa Pāratarāja ......(Of Yolamira, son of Bagareva, Pārata King).....The names Yolamira and Bagareva betray the Iranian origin of this dynasty. The suffix Mira refers to the Iranian deity Mithra. Yolamira means "Warrior Mithra." Bagareva means "rich God." "The Pāratarājas are identified as such by their coins: two series of coins, one mostly in copper bearing legends in Kharoshthi and the other mostly in silver bearing legends in Brahmi. Among coins known so far, there has been no overlap between the two series, which appear to be quite separate from one another, despite commonalities of content. The notable feature of both series is that almost all of the coins bear the name ‘Pāratarāja’ as part of the legend, and they nearly always bear a swastika on the reverse (the exceptions being some very small fractions that seem to eliminate the swastika and/or the long legend, including the words ‘Pāratarāja’, for lack of space). The coins are very rare and, when found, are discovered almost exclusively in the Pakistani province of Baluchistan, reportedly mostly in the area of Loralai..."......NEW LIGHT ON THE PĀRATARĀJAS by PANKAJ TANDON.......http://people.bu.edu/ptandon/Paratarajas.pdf http://balkhandshambhala.blogspot.in/
Fig. 20. Ancient Indian Coin.
The Migration of Symbols, by Goblet d'Alviella, [1894
(Archæological Survey of India, vol. x., pl. ii., fig. 8.)
Many coins and seals of ancient India carry the Swastika symbol.
Satavahana coin, Copper, die-struck symbol of lion standing to right and a bigSwastika above on obverse, tree on reverse with a counter mark. As these coins are un-inscribed their issues cannot be ascertained with certainty. They ae actually regarded as the earliest coins of India.
Yolamira, silver drachm, early type c. 125-150 CE. Legend around Swastika is inBrahmi lipi (script).
Kuninda, an ancient central Himalayan kingdom, c. 1st century BCE, silver coin. Rev: Stupa surmounted by the Buddhist symbols triratna, surrounded by a Swastika, a "Y" symbol, and a tree in railing. Legend in Kharosthi script.
Corinthia, Circa 550-500 BC. Stater (Silver). Pegasos, with curved wing, flying to left; below, koppa. Reverse. Incuse in the form of a Swastika to left. (Source: Wikipedia) http://flagstamps.blogspot.in/2013/08/the-ancient-symbol-of-swastika-its-uses_5258.htmlBharhut
"According to Bon tradition, the founder of the orthodox Bon doctrine was Tonpa Shenrab Miwoche of Tagzig...... some writers identify the region with Balkh/Bactria. The name Shenrab has an Iranian sound to it.....One of the most powerful and resonant words in pre-Buddhist Tibet was yungdrung (g.yung drung). It was a the key terms for the old royal religion, the mythological backdrop to the kingly lineage of the Tibetan Empire. For example, the inscription of the tomb of Trisong Detsen has the line: “In accord with the eternal (yungdrung) customs (tsuglag), the Emperor and Divine Son Trisong Detsen was made the ruler of men.” I discussed how to translate that term tsuglag in an earlier post. Here, as you no doubt noticed, I have translated yungdrung here as “eternal”. Eternity seems to be the general meaning of yungdrung in the early religion. In addition, the word was associated with the ancient Indo-European swastika design, which in Tibet was the graphic symbol of the eternal...what did the early Buddhist writers and translators do with this term? Many of them just attached it to the word “dharma” (i.e. Buddhism), no doubt in an attempt to transfer its prestige from the earlier religion to Buddhism. Thus we see “the eternal dharma” (g.yung drung chos) in many Dunhuang manuscripts.".....http://earlytibet.com/2008/04/30/buddhism-and-bon-iii-what-is-yungdrung/
"the Pāradas of the Mahabharata, the Puranas and other Indian sources........"...coins of Yolamira is in itself a breakthrough, as this is one king for whom we have independent evidence. Konow reports on some pottery fragments from Tor Dherai in the Loralai district that carry an inscription relating to one Shahi Yolamira. Konow says the name Yolamira is not known to us. These coins, found in the same area, provide further evidence of the existence of this king, and can place him in some historical context.....Once again, the validity of this reading is buttressed by examining the meaning of the name. In Bactrian, the name Yola-mira means ‘warrior Mithra’....http://people.bu.edu/ptandon/Paratarajas.pdf"...Of the Shahi Yola Mira, the master of the vihara, this water hall (is) the religious gift, in his own Yola-Mira-shahi-Vihara, to the order of the four quarters, in the acceptance of the Sarvastivadin teachers. And from this right donation may there be in future a share for (his) mother and father, in future a share for all beings and long life for the master of the law’ .......Sten Konow, Corpus Inscriptionum Indicarum, Vol. II pt. I, pp. 173"....As permanent monasteries became established, the name "Vihara" was kept. Some Viharas became extremely important institutions, some of them evolving into major Buddhist Universities with thousands of students, such as Nalanda.""fixing the reign of this dynasty in the interior of Baluchistan during the second and perhaps the third centuries AD fills an important gap in the history of the region. Very little has hitherto been known of the politics of this area from the time of Alexander’s departure to the arrival of Islamic invaders in the early eighth century. Some historians have tended to assume that the Kushans must have held sway over this region, but that hypothesis does not appear to be correct, as the Pāratarājas appear to have been ruling precisely at the time when the Kushan empire was at its zenith...".......http://people.bu.edu/ptandon/Paratarajas.pdf"Given Konow’s suggestion that Kanishka began the use of the term Shahi, a suggested date for the Pāratarājas would be around the middle of the second century, give or take a quarter century or so."........http://people.bu.edu/ptandon/Paratarajas.pdf
"The swastika mark is not encountered on Kushan coins, but it is an element on Kushanshah coins.."..http://www.academia.edu/2078818/The_Mint_Cities_of_the_Kushan_Empire"The Kabul Shahi also called Shahiya dynasties ruled one of the Middle kingdoms of India which included portions of the Kabulistan and the old province of Gandhara (now in northern Pakistan), from the decline of the Kushan Empire in the 3rd century to the early 9th century. The kingdom was known as Kabul Shahi (Kabul-shāhān or Ratbél-shāhān in Persian کابلشاهان یا رتبیل شاهان) between 565 and 879 when they had Kapisa and Kabul as their capitals, and later as Hindu Shahi.....The Shahis of Kabul/Gandhara are generally divided into the two eras of the "Buddhist Shahis" and the "Hindu Shahis", with the change-over thought to have occurred sometime around 870 AD with the Arab conquest....."....Sehrai, Fidaullah (1979). Hund: The Forgotten City of Gandhara,
"The mountainous region of Central Asia comprising the eastern parts of Afghanistan and Pakistan and northwest India has always known war. Even now, the area, high in the Hindu Kush mountains, proves difficult to hold......In the sixth century C.E., the place was known as Gondhara, and nominally controlled by the Huns—a people famed for being great horsemen and even greater warriors. Some 200 years later, Gondhara was ruled by a succession of kings called the Hindu Shahi.....It was the Hindu Shahi kings who first minted these silver coins—a simple and elegant representation of the diversity of the region. On one side is the Hun soldier on horseback; on the reverse, the bull that is so sacred to the Hindus."....http://www2.educationalcoin.com/2012/12/21/bull-horse/Charles Frederick Oldham The Sun and the Serpent: A Contribution to the History of Serpent-worship, 1905..Serpent worship; The Shahis of Afghanistan
"King standing facing, head turned to right, Brāhmi legend at left: Koziya....Koziya issued several differnt types of copper drachms, some of very fine style, such as this one. So Koziya must have risen to the throne as a teenager and probably had quite a long reign, given the wide variety of types he issued."....http://coinindia.com/galleries-parata-rajas.html**************************"Bagolago is a Bactrian term.....the Bagolago at Mat (Mathura)......equivalent Prakit term 'devakula' appears in the inscriptions....the Mat site is one of three certain complexes (others are Surkh Khotal and Rabat) which are part of the same sort of ritual activity....There may be many more similar sites....as many as eight sites.......There is no way for certain what a Bagolago was....The sites have several features in common. They are not public spaces...have an association with water...had erections of both Kings and Gods....unclear if the kings attended the gods or vice-versa......there served some dynastic purpose but terms such as 'dynastic shrine' or 'dynastic cult' may be too strong....the presence of the Bagolago at Mat emphasizes the importance of Mathura....Mathura was the capital of Surasena which the Kushans ruled....http://www.academia.edu/2078818/The_Mint_Cities_of_the_Kushan_Empire
" The meager remains of Bactrian so far described are usefully supplemented by some identifiable Bactrian loanwords in other, better-known languages. As well as words already attested in Bactrian (e.g., Pers, xidēv < Bactr. xoadēo “lord,” Kroraina Prakrit personal name Vaǵamareǵa < bago “god” plus marēgo “servant”) these include some new vocabulary".....bagolaggo [-ŋg] “temple”),..... most of the “Bactrian” legends are virtually identical in vocabulary and phraseology to their Pahlavi equivalents. A legend such as bago pirōzo oazarko košano šauo “Lord Pērōz, great Kušānšāh” may be compared with the Pahl.....http://www.iranicaonline.org/articles/bactrian-language
"..... 'devakula' in Mathura we will return to this type of site later. ..... the only Jain Stupa known from the period; and most important, the Bagolago at Mat."
Kula-Deva (Sanskrit) ......Domestic god
कुल ...kula: chief ...family ...inhabited country ...residence of a family ...seat of a community ...lineage [ family ] ...clan ...high station ...caste ...race ...noble or eminent family or race ...tribe
"Kanishka...........SHAR had many meanings in the ancient cultures of the Near East, it meant both celestial bodies and master. UONONKCHE, which can be also read as VONONTE, was the name of a number of historical personalities - for example the Parphian king Vonones, its successor Vonones, the second name or more exactly - the title of the conqueror of Bactria - the Kushan ruler Kanishka, called Uanando Bagolago. All names stem from the epithet Vanand ('victorious, presented with the grace of the Gods'), which is of very ancient origin with roots in the Sumero-Accadian and from there in the Sanskrit culture. Since the eastern Iranian languages replaced "o" with "a" (which is also characteristic to the modern Mundjan and Tadjik languages), in Old Parphian this epithet was pronounced as VONONES, while for the Kushans - as UANAND.. ".....http://ashrafonline.net/vb/showthread.php?p=316003
Канишки (Канишка) звучало Uanando Bagolago
نصف الأبجدية الهركليفية 14/28 اكتشفت من طرف العلماء العرب في ... ......The best example is a stamp of Tervel, where next to the face of the ruler are ... the conqueror of Bactria - the Kushan Ruler Kanishka, called Uanando Bagolago....http://ar.cyclopaedia.net/wiki/Kushan_Ruler
"Kanishka I (Sanskrit: कनिष्क; Bactrian: Κανηϸκι, Kaneshki; Middle Chinese: 迦腻色伽 (Ka-ni-sak-ka > New Chinese: Jianisejia), or Kanishka the Great, was the emperor of the Kushan dynasty in 127–151 AD.....famous for his military, political, and spiritual achievements. A descendant of Kushan empire founder Kujula Kadphises, Kanishka came to rule an empire in Bactria extending from Turfan in the Tarim Basin to Pataliputra on the Gangetic plain during the Golden Age of the Kushanas. The main capital of his empire was located at Puruṣapura in Gandhara (Peshawar in present Khyber Pakhtunkhwa, Pakistan), with two other major capitals at ancient Kapisa (present Bagram, Afghanistan) and Mathura, India. His conequests and patronage of Buddhism played an important role in the development of the Silk Road, and the transmission of Mahayana Buddhism from Gandhara across the Karakoram range to China."
Iranian/Indic phase.....Following the transition to the Bactrian language on coins, Iranian and Indic divinities replace the Greek ones: ΜΑΝΑΟΒΑΓΟ (manaobago, Vohu Manah ).......Vohu Manah is the Avestan language term for a Zoroastrian concept, generally translated as "Good Purpose" or "Good Mind" (cognate with Sanskrit vasu manas), referring to the good moral state of mind that enables an individual to accomplish his duties.
Surkh Kotal...... 36.03N, 68.55E......."That Surkh Kotal was a major site of direct importance to the Kushan dynasty is beyond doubt. It is the site of a bagolago, a dynastic shrine associated with the period from Wima Kadphises to Huvishka........http://www.kushan.org/sources/coin/sites.htm......Ball, 1982: no.1123 ....Ball, W (1982) Archaeological Gazetteer of Afghanistan, Catalogue des Sites Archaeologiques D'Afghanistan. 2 Volumes.
"The Rabatak inscription is an inscription written on a rock in the Bactrian language and the Greek script, which was found in 1993 at the site of Rabatak, near Surkh Kotal in Afghanistan. The inscription relates to the rule of the Kushan emperor Kanishka, and gives remarkable clues on the genealogy of the Kushan dynasty."
"Jamal Garhai is ancient Gandharan site located 13 kilometers from Mardan in Khyber Pakhtunkhwa province in northern Pakistan. Jamal Garhi was a Buddhist monastery from the first until the fifth century AD at a time when Buddhism flourished.....The most remarkable find in Jamal Garhi is the circular stupa situated on high ground to the west of the main clump of edifices. The stupa is surrounded by a ring of cubicles that may have either served as shrines housing images of Buddha or prayer chambers for the devout. The superior stonework and symmetry of the stupa are notable..... The Central Asiatic Kushans, originally fire worshippers, had embraced Buddhism and followed their new faith with the customary zeal of recent converts. In fact, Huvishka’s predecessor, the great Kanishka, is commemorated to this day for his ardent pursuit of ordering some of the most monumental stupas ever to be raised...........http://odysseuslahori.blogspot.com/2014/10/Jamal-Garhi.html
"The Kushan empire emerged as one of the most powerful empire empire during first century A.D. in central Asia.....Kushanas had very unique system of administrative system. King was highest level of administration. King and kingship was linked with divine rule.The Kushana kings generally used exalted titles like maharajadhiraja (king of kings), daivaputra (son of heaven), soter (Saviour) and kaisara (Caesar). The Kushans had appointed ksatrapas and mahaksatrapas for different units of the empire. There were other officials performing both civil and military functions, called dandanayaka and mahadandanayaka.......The Kushans seem to have followed the earlier existing pattern of the Indo-Greeks and Parthians by appointing ksatrapas and mahaksatrapas for different units of the empire. There were other officials performing both civil and military functions, called dandanayaka and mahadandanayaka. At village level, gramika and padrapala– both signifying ‘village headman’, who collected the king’s dues and took cognizance of crimes in his area."......
"It seems that the Kushans, upon becoming masters of Bactria, at first continued the traditional use of Greek as a medium of written communication. As a spoken language they had adopted Bactrian, the native idiom of the country, which they afterwards elevated to the status of a written language and employed for official purposes, perhaps as a result of increasing national or dynastic pride. The earliest known inscriptions in Bactrian (the “unfinished inscription” from Surkh Kotal, cf. A. D. H. Bivar, BSOAS 26, 1963, pp. 498-502, and the Dašt-e Nāvūr trilingual) belong to the reign of Vima Kadphises. A few decades later, early in the reign of Kanishka I, Bactrian replaced Greek on the Kushan coins. After this period Greek ceased to be used as an official language in Bactria (although later instances of its use by Greek settlers are known, cf. P. M. Fraser, Afghan Studies 3-4, 1982, pp. 77f.)."....http://www.iranicaonline.org/articles/bactrian-language
Mithraic Studies: Proceedings of the First International Congress.....Page 138 ...By John R. Hinnells
http://balkhandshambhala.blogspot.in/
Necklaces with a number of pendants
aṣṭamangalaka hāra
aṣṭamangalaka hāra depicted on a pillar of a gateway(toran.a) at the stupa of Sanchi, Central India, 1st century BCE. [After VS Agrawala, 1969, Thedeeds of Harsha (being a cultural study of Bāṇa’s Harṣacarita, ed. By PK Agrawala, Varanasi:fig. 62] The hāra or necklace shows a pair of fish signs together with a number of motifsindicating weapons (cakra, paraśu,an:kuśa), including a device that parallels the standard device normally shown in many inscribed objects of SSVC in front of the one-horned bull.
•
(cf. Marshall, J. and Foucher,The Monuments of Sanchi, 3 vols., Callcutta, 1936, repr. 1982, pl. 27).The first necklace has eleven and the second one has thirteen pendants (cf. V.S. Agrawala,1977, Bhāratīya Kalā , Varanasi, p. 169); he notes the eleven pendants as:sun,śukra, padmasara,an:kuśa, vaijayanti, pan:kaja,mīna-mithuna,śrīvatsa, paraśu,
darpaṇa and kamala. "The axe (paraśu) and an:kuśa pendants are common at sites of north India and some oftheir finest specimens from Kausambi are in the collection of Dr. MC Dikshit of Nagpur."(Dhavalikar, M.K., 1965, Sanchi: A cultural Study , Poona, p. 44; loc.cit. Dr.Mohini Verma,1989, Dress and Ornaments in Ancient India: The Maurya and S'un:ga Periods,Varanasi, Indological Book House, p. 125).
After Pl. 30 C in: Savita Sharma, 1990, Early Indian symbols, numismatic evidence, Delhi, Agama Kala Prakashan; cf. Shah, UP., 1975, Aspects of Jain Art and Architecture, p.77)
In his 1890 monograph, Theobald lists 312 'symbols' deployed on punch-marked coins. He revises the list to 342 symbols in his 1901 monograph. It should be noted that many of the symbols recorded on punch-marked coins also survive on later coinages, in particular of Ujjain and Eran and on many cast coins of janapadas. DR Bhandarkar’s view is that the early punch-marked coinage in Hindustan is datable to 10th century BCE though the numismatists claim that the earliest coinage is that of Lydia of 7th century BCE.
“The coins to which these notes refer, though presenting neither king’s names, dates of inscription of any sort, are nevertheless very interesting not only from their being the earliest money coined in India, and of a purely indigenous character, but from their being stamped with a number of symbols, some of which we can, with the utmost confidence, declare to have originated in distant lands and in the remotest antiquity…The coins to which I shall confine my remarks are those to which the term ‘punch-marked’ properly applies. The ‘punch’ used to produce these coins differed from the ordinary dies which subsequently came into use, in that they covered only a portion of the surface of the coin or ‘blank’, and impressed only one, of the many symbols usually seen on their pieces…One thing which is specially striking about most of the symb ols representing animals is, the fidelity and spirit with which certain portions of it may be of an animal, or certain attitudes are represented…Man, Woman, the Elephant, Bull, Dog, Rhinoceros, Goat, Hare, Peacock, Turtle, Snake, Fish, Frog, are all recognizable at a glance…First, there is the historical record of Quintus Curtius, who describes the Raja of Taxila (the modern Shahdheri, 20miles north-west from Rawal Pindi) as offering Alexander 80 talents of coined silver (‘signati argenti’). Now what other, except these punch-marked coins could these pieces of coined silver have been? Again, the name by which these coins are spoken of in the Buddhist sutras, about 200 BCE was ‘purana’, which simply signies ‘old’, whence the General argunes that the word ‘old as applied to the indigenous ‘karsha’, was used to distinguish it from the new and more recent issues of the Greeks. Then again a mere comparison of the two classes of coins almost itself suffices to refute the idea of the Indian coins being derived from the Greek. The Greek coins present us with a portrait of the king, with his name and titles in two languages together with a great number and variety of monograms indicating, in many instances where they have been deciphered by the ingenuity and perseverance of General Cunningham and others, the names of the mint cities where the coins were struck, and it is our ignorance of the geographical names of the period that probably has prevented the whole of them receiving their proper attribution; but with the indigenous coins it is far otherwise, as they display neither king’s head, neame, titles or mongrams of any description…It is true that General Cunningham considers that many of these symbols, though not monograms in a strict sense, are nevertheless marks which indicate the mints where the coins were struck or the tribes among whom they were current, and this contention in no wise invalidates the supposition contended for by me either that the majority of them possess an esoteric meaning or have originated in other lands at a period anterior to their adoption for the purpose they fulfil on the coins in Hindustan.” (W. Theobald, 1890, Notes on some of the symbols found on the punch-marked coins of Hindustan, and on their relationship to the archaic symbolism of other races and distant lands, Journal of the Asiatic Society of Bengal, Bombay Branch (JASB), Part 1. History , Literature etc., Nos. III & IV, 1890, pp. 181 to 184)
W. Theobald, 1890, Notes on some of the symbols found on the punch-marked coins of Hindustan, and on their relationship to the archaic symbolism of other races and distant lands, Journal of the Asiatic Society of Bengal, Bombay Branch (JASB), Part 1. History , Literature etc., Nos. III & IV, 1890, pp. 181 to 268, Plates VIII to XI
W. Theobald, 1901, A revision of the symbols on the ‘Karshapana’ Coinage, described in Vol. LIX, JASB, 1890, Part I, No. 3, and Descriptions of many additional symbols, Journal of the Asiatic Society of Bengal, Bombay Branch (JASB), No. 2, 1901 (Read December, 1899).
Plates VIII to XI of Theobald, 1890 listing symbols on punch-marked coins...
The 'symbols' which are a continuum from Indus script hieroglyphs all of which relate to metalwork are:
Meluhha glosses read rebus related to metalwork for these Indus script hieroglyphs are detailed in the book, Indus Script -- Meluhha metalwork hieroglyphs (2014).
The date 1800 BCE is significant in the context of the Ganga River valley of Indian civilization. In the sites of Dadupur, Lahuradewa, Malhar, Raja Nal-ka-tila, iron smelting activities have been attested with the remains of a smelter discovered, dated to ca. 1800 BCE. (Rakesh Tewari, 2003,The origins of iron-working in India: new evidence from the Central Ganga Plain and the Eastern Vindhyas
http://antiquity.ac.uk/ProjGall/tewari/tewari.pdf
Tewari, R., RK Srivastava & KK Singh, 2002, Excavation at Lahuradewa, Dist. Sant Kabir Nagar, Uttar Pradesh, Puratattva 32: 54-62). Dates for early iron use from Indian sites (After Table 1. Rakesh Sinha opcit.)
Technologies used in Mehergarh (5500 - 3500 BCE) included stone and copper drills, updraft kilns, large pit kilns and copper melting crucibles.
Nageshwar: Fire altar (After Fig. 3 in Nagaraja Rao, MS, 1986).
Lothal. Bead-making kiln. Rao,S.R. 1979. Lothal--A Harappan Port Town 1955-62, Vol. I. New Delhi: Archaeological Survey of India.; Rao, S.R. 1985. Lothal--A Harapan Port Town 1955-62. Vol. II. New Delhi: Archaeological Survey of India.Harappa. Bead makers' kiln where the heat was distributed equally to all the holes. The 8-shaped stone structure indicates that this is a bead-maker's kiln. The 8-shaped stone structures with an altar or stone stool in the middle can thus be explained functionally as an anvil used by the bead makers to drill holes through beads and to forge material including metal artifacts. Vitrified kiln walls were discovered in Harappa.
Harappa. Kiln (furnace) 1999, Mound F, Trench 43: Period 5 kiln, plan and section views.
Damaged circular clay furnace, comprising iron slag and tuyeres and other waste materials stuck with its body, exposed at lohsanwa mound, Period II, Malhar, Dist. Chandauli. (After Rakesh Sinha opcit.) The Sindhu-Sarasvati river valley Indian civilization life-activities of metalwork thus continues into the Ganga river valley. The extension of the civilization into the third river valley of Brahmaputra (another perennial Himalayan river system) is as yet an open question subject to archaeological confirmation. The mapping of bronze age sites along the eastern and northeastern parts of India and extending into the Burma, Malay Peninsula and eastwards upto Vietnam (coterminus with the Austro-Asiatic language speaking communities along the Himalayan rivers of Irrawaddy, Salween and Mekong) point to the possibility that the transition of chalco-lithic cultures into the Bronze-iron age (or Metal Alloys age) was a continuum traceable from Mehergarh to Hanoi (Vietnam).
This continuum of metalwork as a principal life-activity (and trade) may also explain the remarkable discovery of the Bronze Age site of Ban Chiang in Thailand (dated to early 2nd millennium BCE). It should be noted that the site of Ban Chiang is proximate to the largest reserves of Tin (cassiterite) ore in the world which stretched along a massive mineral resource belt in Malay Peninsula into the Northeast India (Brahmaputra river valley). The chronological sequencing of metalworking with tin is an archaeometallurgical challenge which archaeologists and metallurgicals have to unravel in a multi-disciplinary endeavour.
The exploration metalwork in the in Northeastern India, in Brahmaputra river valley can relate to the remarkable fire-altar discovered in Uttarakashi:
Syena-citi: A Monument of Uttarkashi Distt. Fire-altar shaped like a falcon.
Excavated site (1996): Purola Geo-Coordinates-Lat. 30° 52’54” N Long. 77° 05’33” E "The ancient site at Purola is located on the left bank of river Kamal. The excavation yielded the remains of Painted Grey Ware (PGW) from the earliest level along with other associated materials include terracotta figurines, beads, potter-stamp, the dental and femur portions of domesticated horse (Equas Cabalus Linn). The most important finding from the site is a brick alter identified as Syenachiti by the excavator. The structure is in the shape of a flying eagle Garuda, head facing east with outstretched wings. In the center of the structure is the chiti is a square chamber yielded remains of pottery assignable to circa first century B.C. to second century AD. In addition copper coin of Kuninda and other material i.e. ash, bone pieces etc and a thin gold leaf impressed with a human figure tentatively identified as Agni have also been recovered from the central chamber.Note: Many ancient metallic coins (called Kuninda copper coins) were discovered at Purola. cf. Devendra Handa, 2007, Tribal coins of ancient India, ISBN: 8173053170, Aryan Books International."
http://bharatkalyan97.blogspot.in/2015/03/x.html?q=a+temple+at+sanchiGlosses linked to zinc, pewterतुत्थ tuttha [p= 450,2] n. (m. L. ) blue vitriol (used as an eye-ointment) Sus3r.; fire;n. a rock Un2. k. (Monier-Williams) upadhātuḥ उपधातुः An inferior metal, semi-metal. They are seven; सप्तोपधातवः स्वर्णं माक्षिकं तारमाक्षिकम् । तुत्थं कांस्यं च रातिश्च सुन्दूरं च शिलाजतु ॥ (Apte. Samskritam) Ta. turu rust, verdigris, flaw; turucu, turuci blue vitriol, spot, dirt, blemish, stain, defect, rust; turicu fault, crime, sorrow, affliction, perversity, blue vitriol; tukku, tuppu rust. Ma. turiśu blue vitriol; turumpu, turuvu rust. Ka. tukku rust of iron; tutta, tuttu, tutte blue vitriol. Tu. tukků rust; mair(ů)suttu, (Eng.-Tu. Dict.) mairůtuttu blue vitriol. Te. t(r)uppu rust; (SAN) trukku id., verdigris. / Cf. Skt.tuttha- blue vitriol; Turner, CDIAL, no. 5855 (DEDR 3343). tutthá n. (m. lex.), tutthaka -- n. ʻ blue vitriol (used as an eye ointment) ʼ Suśr., tūtaka -- lex. 2. *thōttha -- 4. 3. *tūtta -- . 4. *tōtta -- 2. [Prob. ← Drav. T. Burrow BSOAS xii 381; cf. dhūrta -- 2 n. ʻ iron filings ʼ lex.]1. N. tutho ʻ blue vitriol or sulphate of copper ʼ, B. tuth.2. K. thŏth, dat. °thas m., P. thothā m.3. S. tūtio m., A. tutiyā, B. tũte, Or. tutiā, H. tūtā, tūtiyā m., M. tutiyā m.4. M. totā m.(CDIAL 5855) तुतिया [ tutiyā ] m ( H) Blue vitriol, sulphate of copper.तुत्या [ tutyā ] m An implement of the goldsmith.तोता [ tōtā ] m ( H) (Properly तुतिया) Blue vitriol.(Marathi) <taTia>(M),,<tatia>(P) {N} ``metal ^cup, ^frying_^pan''. *Ho<cele>, H.<kARahi>, Sa.<tutiA> `blue vitriol, bluestone, sulphate of copper',H.<tutIya>. %31451. #31231. Ju<taTia>(M),,<tatia>(P) {N} ``metal ^cup, ^frying_^pan''. *Ho<cele>, H.<kARahi>,Sa.<tutiA> `blue vitriol, bluestone, sulphate of copper', (Munda etyma) S توتیا totī-yā, s.f. (6th) Tutty, protoxyd of zinc. (E.) Sing. and Pl.); (W.) Pl. توتیاوي totīʿāwī. نیل توتیا nīl totī-yā, s.f. (6th) Blue vitriol, sulphate of copper. سبز توتیا sabz totī-yā, s.f. (6th) Green vitriol, or sulphate of iron.(Pashto) thŏth 1 थ्वथ् । कण्टकः, अन्तरायः, निरोध, शिरोवेष्टनवस्त्रम् m. (sg. dat. thŏthas थ्वथस्), blue vitriol, sulphate of copper (cf. nīla-tho, p. 634a, l. 26)(Kashmiri) sattu, satavu, satuvu 'pewter' (Kannada) సత్తుతపెల a vessel made of pewter ज&above;स्ति&below; । त्रपुधातुविशेषनिर्मितम् jasth जस्थ । त्रपु m. (sg. dat. jastas जस्तस्), zinc, spelter; pewter. jastuvu जस्तुवु&below; । त्रपूद्भवः adj. (f. jastüvü जस्त&above;वू&below;), made of zinc or pewter. zasath ज़स््थ् or zasuth ज़सुथ् । त्रपु m. (sg. dat. zastas ज़स्तस्), zinc, spelter, pewter (cf. Hindī jast).(Kashmiri) س jas, s.m. (6th) Pewter. Sing. and Pl. See also HI جست jast, s.m. (6th) Pewter. Sing. and Pl. . (P) jastaʿh, Pewter, Pl. يْ ey.(Pashto) खर्परसूत्र (p. 199) [ kharparasūtra ] n S A factitious metal, a sort of pewter. खापरसूत (p. 205) [ khāparasūta ] n (खर्परसूत्र S) A factitious metal, a sort of pewter.जस्त (p. 311) [ jasta ] n ( H) A coarse kind of pewter, Spelter or Tutanag.जस्तफूल or जस्ताचें फूल (p. 311) [ jastaphūla or jastācē mphūla ] n Pewter puffed out like a sponge by exposure to heat.जस्ती (p. 311) [ jastī ] a (जस्त) Relating to जस्त or pewter. भटूर or भटोर (p. 598) [ bhaṭūra or bhaṭōra ] n A factitious metal (of copper, lead, and pewter &c.)भरत (p. 603) [ bharata ] n A factitious metal compounded of copper, pewter, tin &c. 2 Green carbonate of lime. सुरई (p. 861) [ surī ] f (सुरा S through or H) A goblet for cooling water. It is commonly of pewter and is long-necked.(Marathi) H جست जस्त jast, s.m. Zine, spelter; tutenag; prince's metal; pewter:—rūp-jast, s.m. Pewter:—kālā jast, s.m. A sort of blende, or sulphuret of zinc. H جستي जस्ती jastī [jast, q.v.+ई(इन्)+कः], adj. Of, or made of, zinc, or pewter; pewter. H رانگ
रांग rāng [S. रङ्गं], s.f. = H رانگا रांगा rāṅgā [S. रङ्ग+कं], s.m. Pewter; tin:—rāṅg-bharā, s.m. A maker of pewter toys, a toyman (=rang-bhariyā):—rāṅg honā, v.n. To be melted or liquefied; (fig.) to fall or deteriorate in value.A رصاص raṣāṣ (v.n. fr. رصّ 'to stick or join together'), s.m. Lead; pewter; tin.A رصاص raṣṣāṣ (v.n. fr. رصّ; see raṣāṣ), s.m. A seller of lead; a worker in lead and pewter, a tinman.H روپ रूप rūp [Prk. रुप्पं; S. रूप्यं], s.m. Silver (=rūpā); base silver:—rūp-jast, s.m. Mixed metal, a metal composed of quicksilver, tin, and lead (of which ḥuqqa bottoms, &c. are made); pewter:—rūp-ras, s.m. Killed or calcined silver.(Urdu) কংস, কংশ (p. 0192) [ kaṃsa, kaṃśa ] n bell metal—an alloy of copper and tin, pewter; a vessel of bell metal. রূপ (p. 0916) [ rūpa ] ̃দস্তা n. pewter, white metal; German silver. (Bengali) rūḥi tutiyā, Mercury; a sort of pewter; wine;--rūḥi ḥayātī, The vital spirit A قردیر qazdīr, Tin,
pewter.G قسطیر qist̤īr, Tin, pewter.شیر kafshīr, Solder; borax; lead, tin, pewter;--kafshīr kardan, To solder;--kafshīr giriftan (paẕīruftan), To be sol- dered, closed up, united; to heal.(Persian)
See: http://bharatkalyan97.blogspot.in/2015/08/indus-script-deciphered-squirrel.html Annex: Zinc and Brass in Archaeological Perspective Authors: J. Kharakwal, L. Gurjar